Plurion': an Object Oriented Microprocessor

Jecel Mattos de Assumpcgao Jr.

(¢)2004, 2005 - WORK IN PROGRESS?

!Plurion is a trademark of Merlintec Computers and is being registered in process 823954170
at INPI

2Everything described here is subject to change. Please check the first date in Appendix A
(Document History) to make sure that you are reading the latest version of this document.

Abstract

A microprocessor for the next billion computer users should run advanced new soft-
ware at the lowest possible cost and power, which can be achieved when backwards
compatibility is not a requirement. A set of simple processors is a far better use of
large transistor budgets than trying to make a single thread be as fast as possible. Di-
rect support for object oriented programming can speed up advanced software at a very
small cost.

Chapter 1

Introduction

The Plurion Architecture must balance two different goals:

e it must outperform traditional architectures by a large enough factor to make it
worth investing in a custom design rather than a software solution on an existing
processor

e it must be understandable to an advanced Smalltalk programmer. That is, it must
be the next logical step in this progression:

1. using the graphical user interface
2. simple scripting
3. applications in Smalltalk

4. system programming in Smalltalk

This text is an attempt to make understanding how Plurion works the natural step “5”. A
more dynamic presentation would certainly yield better results, but the direct mapping
of the implementation to high level concepts is the key to making this work.

1.1 Why Smalltalk?

Programming languages are tools, and like all tools each one is better for some tasks
than for others. For the particular job of creating simulations in computers (of both
real things like the solar system and of abstract things like a spreadsheet) the various
object-oriented programming languages have been very successful. Though Smalltalk
was the first to be entirely based on objects, it has not been the most widely used among
this group. So the question which is the title of this subsection seems obvious.

But the real question which should be asked is “why not Smalltalk?” It is very rare
for people familiar with several OO (object-oriented) languages including Smalltalk
not to have it as their favorite. In the past they often had to use other options for

different jobs due to lack of hardware resources, though that is no longer a good reason.
Sometimes the massive marketing for some language or other causes clients or bosses
to demand the use of the latest fad. But given the choice, Smalltalk gives the best
results.

There are good technical reasons for this: simplicity, dynamic environment, reflec-
tion, blocks, dynamic types and many others. An interesting trend can be observed
in programming language design over the past two decades. Some designer finds the
ideas in Smalltalk interesting, but feels that the language itself is too large to be practi-
cal. So they create something smaller instead that makes the programmers put up with
all kinds of limitations. Unfortunately, simplicity and compactness don’t last very long
as trying to implement real applications (instead of the simple examples used when
doing the initial design) forces the inclusion of more and more features. By the time
the language is anywhere close to doing what Smalltalk does it is far larger and yet re-
tains most of the limitations of the first version. A good example of this is the relation
between Self (a Smalltalk dialect) and Java at Sun Microsystems.

1.2 Why a new processor?

Given that Smalltalk has now become practical on all reasonable computers due to the
increased memory and processor speeds, it might seem pointless to develop a new pro-
cessor optimized specifically for it. Generic processors and software implementation
tricks should be more than enough and the failed language specific machines a thing of
the past, right?

Wrong! There is no such thing as a generic processor. Every one is optimized for a
specific task. This can be easily seen in the history of Intel’s x86. The very first version,
the 8086, was optimized for both hand written assembly language programs and also
for applications compiled from Pascal sources. The next design, the iAPX286, added
features to support advanced capability based operating systems in the tradition of Mul-
tics. By the time the 386 was released the future obviously belonged to the C language
and the Unix operating system and the processor was radically re-architected to handle
them as well as its competitors (Motorola 680X0, National 32000 and early RISCs)
did. For full backwards compatibility, even the latest Pentium 4 still includes the frame
instructions from the Pascal days and the advanced segments from the Multics-like
days. Just like it still has the BCD math instructions from its 4004 calculator days.
But no modern software uses them and so current designers don’t put any effort into
making them work well. If someone did try to make software that used these features it
would not be efficient compared to C/Unix and, sadly, nobody would find this strange.

1.3 Free Hardware

Technology is a cultural construct - it is about people and environments and not about
machines. If a company fires its ten engineers and then hires ten new ones to replace
them, it won’t take very long for it to find out that most of what it considered its
technology has just walked out the door. Even if the previous team did a great job of

documenting as much as possible, it can never compare to what is in people’s heads.
It is like a group of archaeologists digging up an extensive library from some ancient
civilization: the information helps but that culture is still dead.

The environment is the other needed ingredient. Artifacts such as machines, pro-
grams and texts are important. If the ten original engineers from our imaginary com-
pany arrive for work one day and find that a fire has destroyed all such material, they
will take a long time to recover what was lost. This scenario isn’t as bad as the first,
but both people and things are essential to keep a culture alive.

It is possible to build a computer to be distributed to the next billion users while
staying apart from these users. But that would waste a lot of potential. A far better
alternative is for the developers and users to form a single community, which is only
possible if there are no secrets or restrictions. A design meant to be understandable to
advanced programmers is pointless if they are not allowed to see it. So all materials
related to Plurion will be available to anyone who is interested. To balance the needs
of a commercial project with the interests mentioned here, all of the information for a
given version of the system will be made available under a very free (MIT-style) license
at the same time that the next version becomes available commercially. Since the older
versions will be better for learning than the following ones, this will actually help the
users even more than it might initially seem.

1.4 Project Style

When approaching a problem from outside, all kinds of simple solutions seem obvious.
Reality is far more complicated up close. That is why people hired as coaches seem
stupid to those watching from the stands or from their homes and why voters can’t
understand how politicians seem to lose 20 IQ points once elected.

The simple and obvious solutions normally are just one big mess, with complex
entanglements between their fuzzily defined parts. So a sign of project maturity is
modularity. Dividing the system into isolated blocks, each of which can be separately
understood by a person. “People sized chunks”. The idea is that if you understand
each part and understand how they are put together, then you know everything there is
to know.

One idea that goes against this is “synergy”, where the whole is more than the sum
of its parts. This is avoided in most projects due to the impression that it is a step back
into the bad, tangled design. Another issue is that modular designs can be created by
groups of people while synergetic designs are almost always a product of a single mind.
In theory, at least, it is possible to evolve modular designs by changing one component
at a time since this is not supposed to affect the others.

The great advantage of a synergetic design is that it is smaller and simpler than
an equivalent modular one. And though the initial impression is that it is harder to
learn (“you have to understand everything before you understand anything”) that is not
actually the case. It does take longer for things to “click”, but once they do it is possible
to have the entire design in your mind instead of just one part at a time as with modules.

A mix of the two styles was adopted for Plurion. Where possible, things were kept
isolated in layers or modules. But where great advantages in terms of size could be

gained by binding different parts tightly together, there was no hesitation to do so.
It is important to have a very clear definition for simplicity since that is a major
goal. At least three alternatives could be considered:

absolute simplicity is obtained when nothing more can be eliminated while still hav-
ing a working system. An example would be a paint application where one key
changes the color of the pixel under the cursor and a second key moves the cursor
to the next pixel in some predefined order. Any picture that can be made with the
most sophisticated program can also, in theory, be made with this one. If any of
the two keys were eliminated then this would no longer be true. A second exam-
ple would be a programming system with a completely static memory allocation
scheme. This was the case for Occam.

practical simplicity avoids eliminating elements which have alternatives in theory but
which save a lot of effort in practice. The original MacPaint would be a good
example of this. Simple tools combined with different brushes to allow many in-
teresting patterns to be easily created. The stack-like memory allocation schemes
of Forth or sbrk() in Unix are another example.

total simplicity is based on the idea that making one part of a system simpler normally
causes some other part to become more complex. Yet the number of times that
the different parts must be written varies. Many applications are created to run on
a single operating system, for example, so shifting complexity to the application
means a far larger total effort. A garbage collector is much more complex than
stack-style memory allocation but the applications that use it are simpler.

For this project the goal of simplicity is the version described as total simplicity above.
This means that the lower levels of the system, which are used over and over, tend to
have a very advanced design in order to support smaller and simpler higher levels.

Chapter 2

Architecture

2.1 Interprocessor Connections

The basic elements of Plurion can be seen in the following figure. This design is
recommended for four or less Stack Processors, though it can actually be used for any
number.

Plurion: small architecture

Stack Stack Stack Stack

Processor Processor Processor Processor

S [S I

H
o r—
Network
$ | X 1] ’
A 4
1/0 SDRAM 1e) /O
Ring Controller
Processor Processor

A\

N
J ll Adapter Adapter
TTTTTI TTTTTI

The most complex component is the Stack Processor (SP). Most of this document
is dedicated to the various details about this block, which is responsible for executing
the application and system code. The name “Plurion” is meant to invoke the idea of a
plurality of processors.

Another important part is the I/O Processor (IOP). It is far simpler than the Stack
Processor and can only execute very short code fragments from its internal memory. In

slower implementations each IOP is connected to an adapter circuit (which is normally
different for each one) which handles sub-microsecond changes in the interface signals,
while the software running in the IOP handles changes under a millisecond. For very
high frequency implementations the software can do everything that is needed and the
adapter can be eliminated. Higher level and less time critical functions are handled by
the main software running on the SPs. Thanks to the IOP this software can have a very
abstract view of the external world for the peripherals will seem to be very smart and
work in terms of objects and messages.

The SDRAM controller allows conventional memory chips to be used to build sys-
tems. Though the figure shows only one such block, any particular implementation can
have several if needed. A direct connection is shown between the memory controller
and the adaptor for one of the IOPs. This is for video output and avoids having such
traffic occupy the internal network.

The connection between these blocks is in the form of a unidirectional “register
insertion” ring network. This means that in normal operation each block repeats its
input on its output with a single clock delay. When a node needs to transmit a command
or data to another, it simply inserts a register (actually a FIFO memory) initialized to
the contents it wants to send. Now the output represents the input delayed by a number
of clock cycles. We can say that the ring has grown by a certain number of words. If
the node needs to send something else it can’t because its register is busy, so we have
a distributed arbitration scheme. On any given cycle, a node can indicate that it has
nothing to send using the idle signal. The node receiving the message doesn’t repeat
it but indicates idle instead. When a node outputs some data from its register but has
idle in the input, then the amount of data in the register will decrease by one word.
Eventually it will be entirely empty and the node will be free to send a new message.

One or more I/O Ring blocks extend the internal network to an external unidirec-
tional ring where additional IOPs implement specialized interfaces. Normally this is
done in the form of small expansion boards.

The last block shown in the figure is the O Network. It is basically an extension
of the internal ring network to inter node communication. It uses the same register
insertion architecture, though the ring is bidirectional unlike the internal network. Most
implementations use just one O Network block but it is possible to have a chip with
nothing but a number of such blocks. That would be a router and is very interesting for
building large configurations of parallel computers using Plurion nodes.

An alternative interconnection scheme is recommended when nine or more SPs are
used:

Plurion: large architecture

T \L
/0 110

/10
Processor Ring Processor
~ ' 'S

Stack Stack Stack
€« €« «

Processor e Processor e Processor e

U1 2 | 1 | 1

¥
10SS8901d
(0]]]

191depy
10SS8001d
(0)]

Stack Stack Stack

Processor €« Processor €« Processor €«
_e—l T | b | b

Stack Stack Stack

1e1depy
10SS8201d
(o)

Processor Processor Processor
— — —

—l T | 1 | 1

1e1depy
10SS8201d
o/

v
10SS8201d
O/l

A 4 A\ 4 A 4
110 SDRAM 110
Controller

Processor

This uses the fact that each SP can have either one (as in the first figure) ring
interface or two (as shown here). When a single SP is connected to two networks, it can
pass messages between them. It only accepts such messages when it is free to transmit
on the other network, so a message destined for another ring can circulate a few times
on the current one if the SP in the intersection of the two has recently transmitted
something. This is also the scheme that the O Network block uses to transfer messages
between the internal and external rings, though it has far larger buffers than the ones
inside the SP interfaces and so can more easily deal with busy networks.

Processor

2.2 Configuration Options

The architecture described in this paper can be implemented in many different forms.
The register transfer level (RTL) files were created in such a way that changing one
of the following options normally requires only the addition of a single line defining a
symbol used in the files. None of these options can be changed at run time.

2.2.1 data and tag sizes

The Plurion architecture follows the venerable footsteps of such great computers as the
Burroughs mainframes and the Lisp Machines in implementing dynamic strong typing
at the hardware level. This is done with two systems which are described here and in
the next section. The most basic system is the inclusion of a hardware recognized rag
in every single word. They tell the hardware how the rest of the bits in the word should
be interpreted so that it is not possible for the software to do the wrong thing.

31+1 is the option most compatible with Squeak Smalltalk. The single tag bit in-
dicates if the data should be interpreted as a signed integer (tag=0) between -
1,073,741,824 and 1,073,741,823 or as an object reference (tag=1). The bits for
object references are divided into a “group” part and an “object” part. The top
two bits indicate the size of the two parts (0/29, 6/23, 14/15 or 22/7) where the
case with no group part really indicates references to symbols.

32+4 is the best option and should be used whenever possible, which is the case when a
recent FPGA or custom chip is used and the main memory has extra bits normally
used for error checking and correction (ECC). As the data is the same size as
used in other machines and languages, exchanging data with them is simpler.
The meaning of the tags is:

| tag | interpretation of the data bits |

0000 | signed integer between -2,147,483,648 and 2,147,483,647
0001 | floating point

0010 | character

0011 | symbol

0100 | bytecodes

0101 | start of bitmap

0110 | middle of bitmap

0111 | end of bitmap

1000 | object reference (24 bits for group, 8 bits for object)
1001 | object reference (16 bits for group, 16 bits for object)
1010 | object reference (8 bits for group, 16 bits for object)
1011 | future objects

1100
1101
1110
1111

2.2.2 object/map association

The hardware has total control over the objects with special values in the tag bits, but
for the generic object references an alternative scheme is needed. This is done by
associating each object with a map, which can be thought of as extending the tag bits

by a whole word. Instructions which must have object specific behavior (like Send) use
the map to do the right thing.

first field is the traditional solution used in Smalltalk implementations. It requires one
memory access whenever the map is needed. Traditionally, the map is an object
reference, but as far as the hardware is concerned it is an opaque bunch of bits.
The software is free to select bits so that they can have further interpretations.

cache allows an arbitrarily complex algorithm to find the map for a given object, and
depends on an efficient cache access to eliminate most of the costs for repeated
look ups. In the previous options only a single map could be associated with
each object, but it is very interesting to allow different associations depending
on the context.

2.2.3 data path serialization

Most instructions execute in a single clock cycle while operating on up to two machine
words. It is possible to trade off time for space by selecting a level of serialization in
the data path which is different than one. A 31+1 wide implementation with a level of
serialization of four would take four clock cycles to deal with two word wide operands,
but the reduction of registers and logic to only 8 bits would make the implementation
smaller than normal. It would not be one fourth of the size since not everything would
be narrower, the control logic would be more complex and some extra multiplexing
circuits would have to be added.

2.2.4 instruction cache size

The instruction cache must hold a whole number of 8 word entries. The absolute
minimum size is 1 entry, because with 0 the whole design would have to be changed
to directly address the external memory. This has a significant impact on performance,
however, and so the largest practical size for any given implementation technology
should always be selected.

2.2.5 data cache size

The data cache must hold a whole number of 4 word entries. The absolute minimum
size is 1 entry, because with 0 the whole design would have to be changed to directly
address the external memory.

2.2.6 stack cache size

The stack cache must hold a whole number of 8 word data frames and a similar number
of 4 word return frames. The absolute minimum size is 2 entries of each kind because
with just 1 a reload would cause deadlocks and with O the whole design would have
to be changed to directly address the external memory. Given the difference in size
between the two kinds of entries, a power of two size for the total cache will make it

impossible to allocate an equal number for them both. That is not a problem - while it
is common for each return frame to correspond to one data frame, it is possible for it
to correspond to several.

Depending on what other options were selected, it is possible for the system to have
to flush/reload the stack cache on each process switch (when the group is not encoded
in the object reference). In that case the “as large as possible” rule doesn’t apply since
the added overhead of process switching might eliminate any gain in send/return speed.

2.2.7 shared instruction caches within processor pairs

Normally each stack processor has its own instruction, data and stack caches. When
the technology allows dual port memories to be used without any penalty (FPGAs, for
example) it is possible to use a single memory block for the instruction cache in two
neighboring stack processors. This allows the cache to be twice as large as it would be
otherwise. The improvement in the hit rate would not be a good as it might initially
seem since the two processors will be fighting over a shared resources (entries), but
that could be compensated by changing the scheduling algorithm to use any of the two
for a given process since both have access to its working set.

2.2.8 shared data caches within processor pairs

This is exactly the same as the previous case, but with the data cache instead of instruc-
tion cache. Though available as a separate option, it is a good idea to have both shared
or neither shared, specially if the scheduler is to behave as described above. The stack
cache can never be shared.

2.2.9 size of SDRAM data

Memory bandwidth is the most critical element in obtaining high performance. The
use of three caches for each stack processor and separate local memories for each I/O
processor is meant to increase the internal bandwidth available independently of the
external memory. But a wide path to main memory is still a good idea.

16 is used in the Oliver truck terminal and the XSA development kits from Xess. A
3244 data/tag system is not possible in this case. It is the lowest cost option
practical.

32 is atrivial way to improve a design that was previously 16 bit, but most of the other
problems would remain.

36 would allow all interesting data/tag widths, but is hard to implement with a small
number of chips. Three 16 bit wide memories would be 48 bits, so half of one
chip would be wasted.

64 is the most common width for low cost memory modules today (DIMM and SODIMM,
SDRAM and DDR SDRAM). A 32+4 data/tag system is not possible in this case.

10

72 allows all interesting data/tag widths and while some variations (DDR SODIMM
with ECC) are hard to find in distributors that deal with end users, they are avail-
able via OEM distributors.

2.2.10 Memory Controller Options

Either normal or double data rate (DDR) synchronous dynamic memory (SDRAM) can
be used, but for now this is not a run time option. Older dynamic memories and static
memories are not supported. Although a bit awkward, the controller can optionally be
used to access Flash memory. A better alternative is to use an I/O processor for that but
that isn’t possible when the two kinds of memory share cpu pins (as in the Oliver truck
terminal).

2.2.11 hardware objects

The stack processors have a core part and caches, but also include a number of hardware
objects. They are accessed with the Special Send instructions and can receive two
word and send back one result from/to the stack cache on each clock cycle. Three
of these objects must be included in each stack processor in order to allow them to
be complete enough to run most programs: ALU, CMP and MEM. In theory, that is
enough for them to run any program since all other hardware objects can have software
equivalents which are invoked by the same instructions when they are missing in an
implementation. An example of such an object is MAC. When it is not present and the
program tries to execute a multiplication instruction, for example, then a corresponding
software method is executed instead and the main program can’t tell the difference
except for the speed.

A major complication is the case where a given hardware object is present on some
of the stack processors, but not all of them. If it is a particularly large one (like an in-
verse DCT conversion hardware for speeding up MPEG movie decoding) this might be
the only practical alternative. The software method should not executed when invoked
on a processor without the hardware, but should instead suspend the process and tell
the scheduler to force it to run on a processor that does have it. The instruction would
be retried and this time it would work just fine.

2.2.12 number of stack processors

This is selected “manually” by changing the top design file to include the required
number. Since the ring network makes it easy to snap them together into a large system,
this is no big deal.

2.2.13 number of I/O processors

This also requires hand coding of the main design, as in the previous option. An ad-
ditional complication is that while the stack processors are entirely internal to Plurion,
the I/O processors must have access to external pins. Between the core of the I/O
processor and the pins there usually needs to be a simple circuit to customize for the

11

different interfaces. In the case of FPGAs the I/O processors start out with their pro-
gramming preloaded, so that is an additional customization that must be included in
the design. On ASICs operating at sufficiently high frequencies, the adapter circuits
can be replaced with software solutions and a generic interface to the pins.

2.2.14 1/0 processors are multiplexed?

The detailed description of the I/O processors in this paper shows it switching between
16 fixed priority tasks in the spirit of the old Xerox PARC Alto computer. That allows
a significant amount of hardware to be shared between different interfaces. When there
are enough resources available for a design, however, a more interesting alternative is
to have 16 separate I/O processors, each running a single task, instead of multiplexing
one. A single system might have a mix of multiplexed and separate 1/O processors if
that is the best solution for a particular application.

12

Chapter 3

Execution Model

PLURION Architecture = Stack of Stacks of Stacks
Level 1 : Frames [TTTTTTT] 3 T T1TT1]
N ™

returned values are pushed into frames

[TTTTTTTI0 3 [TTTTT1T1]
Level 2 : Expressions [TTTTTTTIC [TTTTTTT] Current

(C)2004 Jecel Assumpcao Jr

Open and Oxxx instructions create new frame

COITTTTT10
[EEEEEEEE 3 [EEEEEEEE
Level 3 : Contexts TTTTTTIC OTTTTTT] [OOITTTTT] ¢=0

Send instructions move Open frame to new context

Though inspired by the Lisp machines and their “split call” instructions and also by
my own previous work in alternate code representation for Smalltalk, this design has
not been previously considered in computing science as far as I know.

At the lowest level we have “frames”, which are small and fixed sized stacks. Each
one can hold up to 8 elements. As results are generated by the hardware, they are
pushed into some frame.

The next level is a stack of frames, called the expression stack. It includes a variable
number of frames. The base frame in this stack is called the current frame and is
indicated by “C” in the drawings. The top element in this stack is called the open
frame, indicated by “O”.

The “Open” instruction (and the “Oxxx” variations of other instructions as ex-
plained below) allocates a new, empty frame and pushes it on top of the expression
stack. Many instructions use the data in O and then pop it from the expression stack,
pushing their result into the new O. It took a while for me to convince myself that this

13

was the desired behavior, just like the idea of using objects and messages for some-
thing as basic as integer math seemed so absurd that most languages since Smalltalk
have gotten it wrong. This simple expression

3+ 4
compiles to
OiLit 3 iLit 4 +

where the first instruction allocates a new frame and the third destroys it. As long as the
hardware can handle such operations in a single clock (without making us slow down
that clock, of course) then this is perfectly reasonable no matter how wasteful it might
seem.

The “Open” has a very nice correspondence to the source code. In Neo Smalltalk
it means an increased in the level of underlining and in Smalltalk-80 with all the op-
tional parenthesis present it indicates an open parenthesis. Note that evaluation order
in the machine code corresponds to left-to-right in the source, unlike in Oliver where
it is inverted. Here is an example with the comments showing how the frames in the
expression stack work:

e ((34+4)*5) ...

; <.... 42> initial expression stack

Open ; <.... 42> <> new frame

0iLit 3 ; <.... 42> <> <3> another new frame with one element
iLit 4 ; <.... 42> <> <3 4>

+ 7 <.... 42> <7> popped a frame

iLit 5 ; <.... 42> <7 5>

* o <.... 42 35>

Other instructions will be described further down which have different effects on the
expression stack.

The top level is called the context stack, and includes a variable number of expres-
sion stacks. It grows due to the “Send” instructions (and variations) and shrinks due to
the “Return” instruction (and its one variation). During the execution of a Send, O is
converted into the base of a new expression stack. That causes O and C to be the same,
which is normal.

3.1 Return Stack

Though not normally visible to the programmer like the data stack frames described
above, it is the return stack that give these frames their structure. For each frame
shown in the figure at the begining of this chapter, a four word return frame with the
following format is allocated:

14

name | description |
PC program counter: indicates the next bytecode to be exe-
cuted
SP stack pointer: indicates both where a copy of the data
frame may be found in main memory and (in the three
lowest bits) which word in that frame will receive data
that is pushed
Sender indicates another return frame which will become the ac-

tive one when we answer with some result
Current/NextLexical | for open frames this indicates the corresponding Current
frame (in the return stack), while for block current frames
this indicates the current frame for the next outer lexical
level

The PC is present in every return stack frame, but isn’t necessarily valid in all of
them. In particular, when an O frame becomes C due to a message send then the value
of the PC in the calling method is stored in the return frame right below the ex-O. The
PC in frames below that (if any) should be ignored.

When a new frame is allocated and O is set to point to it, the previous value
of O is saved in the Sender word of the new frame and the value of C is stored in
the Current/NextLexical word. This is what links the data frames into the stacks of
stacks of stacks structure. When a frame is used as C inside a block method the Cur-
rent/NextLexical word is used by the .[.] instruction to set the frames of the outer
lexical scope for that block as an extension of C. The reuse of the same word for two
different purposes slightly complicates algorithms that walk the return stack but that is
a small price to pay for not having a wasted word in nearly all return frames.

The SP is a little tricky - unlike Sender and Current/NextLexical it does not refer to
another return frame (four words) but to a data frame (eight words) instead. The data
frames are aligned to eight word multiples, so SP points to the first free word at the
top of the stack (indicated as the red box in the execution model figure). The lowest
three bits are the word within the frame while the other bits form the address of the
frame itself in main memory. The top bit, however, as a special meaning. If zero, then
the indicated frame is directly the data stack we are interested in. That stack is limited
to eight words, which while enough for most cases is too small a limit for parts of
the system. So if the top bit of SP is one, then the indicated frame holds eight words
indicating up to eight other frames that actually form the stack (up to 64 words in size).
The three lowest bits of SP indicate the word in the indirect frame which actually holds
the stack pointer. The contents of any words after that one are not valid. The top bit of
the word fetched from the indirect block is interpreted in exactly the same way, so two
(512 words), three (4096 words) or more indirections are possible. This tree of frames
with a root in SP is automatically created and expanded (and contracted, as the case
may be) on stack overflows or by the Xtnd instruction.

15

Chapter 4

Instruction Set

PLURION instruction set

XxX01xxx Xxxx11xxx
XXX00XXX Xxx10xxx

000xxxxx EXTENSION

007130xxxx Send | VAR<-|IND<- | <

010x000x | gLt | JF | pINT | nINT
011xxxxx LIT | VAR [IND | TMP

100xX%XXX JMP 1 JT 1 opINT | OnINT,

101xxxXX OLIT |OVAR |OIND [OTMA

110xxxxX
1115000 SPECIADSENDS
ALU CMP MEM MAC
Xxxxxx000 xxxxx010 xxxxx011 xxxxx100

11000xxx + < AtENDO *
11001xxx - . AtEND1 /
11010xxx <= AtEND2 mod
11011xxx >= SET +
11100xxx OR = LDO
11101xxx | AND #e LD1
11110xxx | xoR _ LD2
111 11xxx | INV isINT STRO LRot

4.1 Extension Prefix

The extension instruction uses a 3 bit operation indicator and a 5 bit value. This will
simply append its value to the value of the next instruction which would normally only

16

have 3 bits (there are 20 instructions like that). So with one extend prefix, we can have
8 bit values. With two prefixes, 13 bits and so on.

4.2 Basic Instructions

As indicated above, there are 20 instructions with 5 bit operation indicators and 3
bit values. Many of these instructions combine their value with the current instruc-
tion pointer (PC) to obtain the effective address. This is indicated as PC#value. In
the case of 3 bit values (no extension prefixes) and 32 (or 36) bit words, we have
PC#value=(PC&~31)+(value<<?2).

The three indirect instructions seem to require two values: one to indicate where in
C is the pointer to the array and another to select a word in that array. The three lowest
bits in the value indicate the pointer (which must be in the first 8 words of its frame)
while the higher bits, if any, select the word. So if no extension prefix is used then

word O of the array is accessed. That is by far the most common case.

The basic instructions are:

| opcode | name | description

plnt positive integer just pushes its value into O

OpInt | open and positive integer | allocates a new frame and pushes its
value there

nlnt negative integer just pushes the complement of its value
into O

Onlnt open and negative integer | allocates a new frame and pushes the
complement of its value there

Lit literal pushes the word at PC#value into O

OLit open and literal allocates a new frame and pushes the
word at PC#value there

Var instance variable pushes the word in object SELF in-
dexed by value into O

OVar open and instance variable | allocates a new frame and pushes the
word in object SELF indeed by value
there

Tmp temporary pushes the indicated word from C into
o

OTmp | open and temporary allocates a new frame and pushes the
indicated word from C into O

IND indirect pushes the indicated word from the ar-
ray pointed to by the indicated word in
Cinto O

OIND | open and indirect allocates a new frame and pushes the
indicated word from the array pointed
to by the indicated word in C into O

17

opcode | name

description

Var<= assign instance variable pops a value from O and stores it in the
word in object SELF indexed by value

&= assign temporary pops a value from O and stores it in C
at the selected word

IND<«= | assign indirect pops a value from O and stores it in the
array pointed to by the indicated word
in C at the selected word

Jmp jump changes PC to PC#value

JF jump if false pops a value from O and changes PC to
PC#value if that was False

JT jump if true pops a value from O and changes PC to
PC#value if that was True

JLit jump literal changes PC to contents of word at
PCttvalue

Send send creates a new expression stack from O
and switches execution to ”PIC mode”

4.3 Special Sends

There are eight special send instructions. What each of them does depends on which
hardware object is selected as the receiver by the value field of the instruction. With
three bits in this field, up to eight hardware objects could be selected without using the
extension prefixes. With a one byte prefix, up to 512 different hardware objects could
be the receiver for a special send, though 8 of these would be the same as in the one

byte version of the instruction.

18

Stack Processor

Stack Cache

Control ALU MEM
fetch
—
Instruction Cache N Data Cache

[

Ring Network Inteface

What happens if the selected hardware object is not present? If no other processor
includes that hardware, then the instruction is converted into a regular Send instruction.
The first element in O is the new receiver while the selector is derived from the original
instruction. If, however, it is known that some other processor in the chip does include
the needed hardware then a trap is generated and the scheduler moves this task to that
other processor where it will resume execution and should be able to run the instruction.

In addition to missing hardware, it is also possible for the hardware to be unable to
execute the instruction due to incompatible operands. The ALU, for example, depends
on its operands being small integers and with such values that the instruction won’t

19

cause an overflow or similar error.

4.3.1 STACK (hardware object 7)

This is a group of control instructions which change the stacks in non standard ways.
Return and NLR (non local return) pop the context stack and transfer the result from
the old O to the new O. The non local variation can pop a certain number of contexts
at a time.

thisCTX pushes a reference to the current context as a full object into O. This has
a side effect of marking that context so it is not automatically freed due to a Return
instruction.

Open has already been described.

mkIND takes a number as an argument and allocates an array of the required size,
pushing its pointer in C. This is used for values which must be shared between two or
more levels of blocks.

The .[.] instruction deals with blocks. It creates a special object which points to the
current context (and so is similar to thisCTX) such that later it can be used to create a
new context which is linked to the current one.

The Pop instruction isn’t needed, but very convenient to have. Since the compiler
can keep track of the stack level for each instruction, it would be possible to use “<- 6”
instead of “Pop” to get exactly the same effect when we know that element 6 happens
to be the current top of the stack.

4.3.2 ALU (hardware object 0)

Normal math operations, all except the last one use a frame with exactly two elements
in it."Inv" only needs one element.

4.3.3 RawALU (hardware object 1)

Exactly the same instructions as for hardware object 0, but all 32 bits are used and no
tag checking is done. This is only needed on the 32 bit implementations since on 36
bit machines even the tagged operations manipulate 32 bits.

4.3.4 CMP (hardware object 2)

Comparison instructions, which like the ALU use a frame with exactly two elements
(except for the last, which needs one). Except for the "=="and "isInt" instructions, the
others require their operands to be small integers or they are converted into a Send. The
result for all these instructions is either a True or a False.

4.3.5 MEM (hardware object 3)

These are very unusual, more normally found in DSPs. The processor has three “streams”
(0 to 2) which each have four registers:

20

e object (all memory operations are in the context of some object)
e index (which word is part of the operation)

e step (how much to change index in each operation

e limit (index can’t go beyond this)

The Set instruction will set the four registers for the lowest currently uninitialised
stream. These are stored at positions 0 to 3 for the first stream, 4 to 7 for the sec-
ond and 8 to 11 for the third stream. This means that any arguments which will be
needed later should be saved elsewhere before using these instruction. If less than four
values are present in O, the ones omitted use these defaults values: SELF, 0, 1, object
size. So a frame with two values would indicate the object and index, while the step
would be 1 and the limit would be the size of the object.

Str0 will pop a value from O and store it in memory as indicated by stream 0. Ld0
to Ld2 will read a value from memory as instructed by the respective stream. After any
of these operations, the value of index is updated as

index := (index + step) mod limit

If as a result of this the index “wrapped around”, then executing AtEnd0, AtEndl or
AtEnd?2 (depending on which stream we wish to test) will push a True value.

Here is how these instructions might be used to add a column of one array to a row
of another:

; the following segment is out of order:

; 1t needs to save the second argument before it is destroyed
below

OTmp 2 ; push second argument, array B
iLit 0 ; index = 0

OTmp 2

Send "rowSize"

; the following segment is out of order:

; 1t needs to save the first argument before it is destroyed
below

OTmp 1 ; push first argument, array A

; here things get back to normal

OTmp 0 ; push SELF, which is the array to receive the result
Set0 ; index = 0, step = 1, limit = SELF size

; the above instruction destroyed Tmp0O through Tmp3

; (though TmpO happened to receive its previous value)

21

; now the topmost frame is the one created by the OTmp 1 instruction

above
Setl ; index = 0, step = 1, limit = A size

; now the topmost frame is the one created by the first OTmp
2 instruction above

Set2 ; index = 0, step = B rowSize, limit = B size
loop:

Open ; space for arguments to add
Ldl

Ld2

n

Str0 ; SELF[..] := A[..]+B[..]
atEnd0 ; check if finished

JF loop

This kind of thing is very important when doing garbage collection and other low level
tasks. At the same time it doesn’t add much overhead to simple operations like #at: ant
#at:put:.

4.3.6 MAC (hardware object 4)

While the first four hardware objects must be present in all Stack Processors, the Multi-
ply and ACcummulate unit is optional. This is why it isn’t shown in the block diagram.
Its connections are exactly like the ones for the ALU or CMP blocks.

Besides multiplication and division instructions, this hardware also handles rotation
(left and right shifts can be done simply by selecting a convenient operand for the
division and multiplication, respectively). A variation of the multiply instruction adds
the result to the top of the stack in the current context. A normal multiplication will
leave its result on that stack, so is used to start a sequence of multiply-add.

22

Chapter 5

Instruction Cache

Instruction

Cache | L2 icache

L3 iCache

L]

L1 iCache RAM

inside the processor

virtual

The first level (L1) of the instruction cache is a part of the Stack Processors. It
holds a subset of the data present in the second level (L2), which is implemented as
a reserved area in the main memory. Depending on the application and the size of
main memory, from 2 to 8MB are typically used for this purpose. The data in L2 is
supposed to be a subset of the data in the 4GB (typical) third level instruction cache
(L3), but this third level doesn’t actually exist. Instead, every time a line is requested

23

from the second level and it isn’t present, a special software handler is called which
determines what the content of that line should be and then loads into L2. This might
be as simple as copying some words from the main memory or could be as complicated
as translating from a different instruction set (Java bytecodes, for example) or doing one
of several optimizations. Besides being virtual, L3 is considered a cache instead of just
instruction memory since it can be seen as a subset of an even larger memory.

Each line in any of the three levels consists of 8 words. There are two different
formats:

Instruction Cache Entry Formats

0 PC & 131 0 PC

1 | bytecades 1 map

2 | bytecades 2 map2

3 3

4 4 | bytecades |t
5 5

6 literal 6 | bytecqgdesP
7 literal 7

regular entry PIC entry

The first word in the line indicates the value of the (virtual) Program Counter as-
sociated with that line. The actual address of the line in the first two levels is obtained
via a hashing algorithm from the PC. For L3 the PC is the address of the line. In most
designs, the tag associated with each line is stored separately from the data in that line.
In FPGAs with only a few, relatively large RAM blocks which can be accessed very
fast it is more convenient to combine them as shown. This also makes implementing
L2 in normal memory much simpler.

Each instruction is one byte in size so the PC can indicate 32 of them in a line.
Since the first word is used by the line’s tag, however, bytes 0 to 3 can never be used
for instructions. In fact, if execution ever is in danger of spilling over to the next line
then the compiler will insert an explicit jump at the end of the current one to avoid that.
In most processors this would be considered a major complication, but in Squeak 3.2,
for example, the average length of a method was 27 bytecodes. And even that number is
highly inflated due to Squeak’s inclusion of all of a block’s code in the parent method.

24

The lowest 5 bits of the first word in the line are O since the line must match for
any one of 32 (actually 28) different PC values. But for the second format shown in
the figure, those 5 bits are always some value other than 0 (which makes it simple to
distinguish between the two). The Inline Cache (IC) was introduced in the first high
performance implementation of Smalltalk (the Deutsch-Schiffman dynamic compila-
tion system[2]) and extended into the Polymorphic Inline Cache (PIC) in Self 3.0[3].
While other processors see code as a strictly linear sequence, Plurion allows small
fragments to branch off in a separate dimension from the main code for each Send in-
struction. When executing these fragments we say that the processor is in the “PIC
mode”.

In this mode the value of the PC remains that of the Send instruction and an addi-
tional 5 bit pointer is used to select the actual instruction to be executed. For a given
cache line to be used in this mode, not only must the PC match word O in that line
but the “map” associated with the message receiver (object O in the open frame) must
match either word 1 or 2. If it doesn’t, then a second cache line is searched and if that
doesn’t match we have a cache miss and must continue the search in L2. When the map
does match word 1, the PC extension is set to 16 (word 4) and if it matches word 2 the
extension is set to 24 (word 6). Words 3, 5 and 7 of the cache line can be used for either
instructions or literal values. Any Jump or Return instructions cause the processor to
exit PIC mode and go back to executing in the normal mode.

25

Chapter 6

Data Cache

In the late 1970s most processors were slower than memory chips. But while the latter
have only increased their bandwidth some 50 times, processors have become more
than 2000 times faster. This has made using indirections, which are the key to flexible
software, extremely costly. The Mushroom project[1] addressed this issue by using
indirections out of the critical paths. Most early Smalltalk implementations used an
object table, so that a reference from one object to another was an index into this table.
This was a very flexible design which allowed objects to move around in memory or
even to be swapped to disk and back very efficiently. But the most common operation,
accessing some field in an object, became more expensive since it required an extra
memory access to find the object’s actual address in the table. The Mushroom solution
was to make the data cache be virtually addressed. With normal caches, you give the
physical address of the word you want and it gives you the data if it has it. To find the
physical address, you would have to look in the object table. In Mushroom you give
the cache the index in the table and the field number that you are interested in and it
gives you the data (if it has it) directly. Only in the relatively rare cases where the data
is not in the cache do we need to look into the object table.

Most current Smalltalks have abandoned the object table in order to perform rea-
sonably well on today’s processors. Each object points directly to others. There is no
way to use the Mushroom trick in a software implementation.

6.1 Neo Smalltalk Object Model

Though Plurion is a great option for running programs in Java or Smalltalk versions
such as Squeak, it was specifically designed with Neo Smalltalk in mind. One of the
most important aspects of an object model is how various objects are grouped together.
Here are ten independent ways of doing this:

grouping other names related | description
to ths concept

26

grouping

other names related
to ths concept

description

disk

package, segment,
soup, image, snap-
shot

In theory, every individual object could
be stored seperately in permanent
memory. The opposite strategy, where
all objects are saved in a single file, has
often been used. Intermediate solutions
give the users more control over disk
management.

process

thread,
actor

transaction,

The most common implementations
have concurrency as totally indepen-
dent of objects, but that is not natural
and is harder to program. When mak-
ing execution an integral part of ob-
jects, this can be applied to all objects
or they can be separated into active and
passive objects.

security

capability, user, ses-
sion

When multiple users share a system, it
is important to protect one from the ac-
tions of the others. Even with a single
user it is a good idea to make accidents
less likely and/or less severe.

type

class, clone family

Even when a programmer is presented
with a model in which each object is
totally independent of the others, that
is not practical in terms of implementa-
tion. The system must use some notion
of type to associate executable code
with the received messages.

inheritance

sub/superclass, trait,
mixin, parent/child

Factoring and refactoring is an impor-
tant process in software development.
Being able to express concepts in terms
of differences in relation to other con-
cepts can provide support for this.

composite

part, assembly

Just like in the real world, objects can
be combined to create larger objects.

version

An object’s state varies over time as a
side effect of normal operation. In ad-
dition, programming changes on live
objects can result in new or removed
slots as well as changes in behavior.

27

grouping

other names related
to ths concept

description

reflection

metaspace, mirror,
class, aspect

While objects often simulate real world
objects, they actually are computer
constructs built with resources like
memory and processing power. Behav-
ioral reflection can deal with the latter
and structural reflection with the for-
mer.

viewpoint

layer, subject, piece,
namespace

Simple systems exist in total isola-
tion and can be completely objective.
Larger systems can’t hope to be en-
tirely consistent and must be prepared
to handle different interpretations of the
same concepts.

role

Concepts in different parts of the sys-
tem can represent a single entity.

For any two dimensions, an example can easily be found that shows that they re-
ally are independent. Unfortunately, people can’t deal with 10 dimensional models.
The only solution is to merge them into a smaller number of dimensions even if some
flexibility is sacrificed. This is true of every existing software system, of course. But
normally the lost flexibility is not a careful design tradeoff but simply the lack of knowl-

edge about the choices available.

This drawing shows how the organization was reduced to essentially two axis. The
basic building block is called the “facet”. Each facet has a collection of slots, which are
pairs of names and values. The most visible organization to the users is the collection

of facets into objects.

Objects ________

The other dimension is called “groups”, which is a separate way of collecting the

28

facets in a manner totally separate from objects. Though also visible in the user in-
terface, groups are more subtle than objects. The other concept shown in the figure is
“maps”. Each map selects an ordered subset of facets from an object. Several objects
can use the same map as long as their facets can be considered equivalent in some way.
This is normally possible when these objects were all created by cloning one of them.

For each object, one facet has a special status and is shown in a different color in the
figure. As will be seen later, in some parts of the system it is possible to refer directly
to facets while in others objects are the only entities that can be addressed. In the latter
case a reference to this “top facet” is equivalent to a reference to the object.

Here is how the dimensions are associated with the concepts of groups, objects and
maps:

disk - groups are transferred between disk and local memory as a unit. Groups can’t
be changed (see version below) and so are never overwritten on disk.

process - each group has its own execution thread which is independent of all the
others. Objects are associated with the group holding their top facet when rep-
resented in memory, so a message from an object to another in a different group
can be detected and treated differently from messages to “local” objects

security - each group has a unique ID that can’t be guessed, so the only way to access
an object is to have been previously given a reference to it. In addition, what
messages can be sent to that object will depend on who is sending (see viewpoint
below) so the infrastructure for a very flexible “capability based” security system
is in place. The actual security depends on how the higher level software uses
this

type - maps are the hardware’s notion of types, so a single object can have more than
one type depending on context (viewpoint)

inheritance - facets are shared between an object and its clones, which results in a
fuzzy and loose version of inheritance

composite - objects have a set of references to other objects (specifically, their facets
hold references to the top facets of other objects)

version - once created, a group is immutable. The only way for an object to change
is to create a new group with facets that override the old ones. The association
between the old and new groups is explicit

reflection - normally systems are built such that every object is associated with a set
of meta-objects that control their behavior. That isn’t easy for everyone to under-
stand, so an alternative model is to have some “meta-methods” to be invoked on
the object itself when needed. This won’t get in the way of base-level behavior
if these extra methods are only available from a special viewpoint

viewpoint - each process (and so each group) is associated with a single viewpoint.
When a message is sent between objects in separate processes the current view-
point (default context) is not changed so that the sender’s viewpoint is used by
the receiver. The viewpoint can be changed explicitly at any time

29

role - when the current viewpoint is changed, all associations between objects and
their maps are affected. In contrast changing the role allows a single object to be
associated with a different map in the same viewpoint

The key element is how {objectID, viewpoint} => map is implemented.

6.2 Virtual Memory and the Data Cache

The first level of the data cache is accessed by a 2 word logical address: the objectID
and the field offset.

30

31

Chapter 7

I/0 Processor

I/0 Processor

—— RAM
and
Registers
ALU
I
i task ready -

5 L))
N

trigger

7.1 Instructions

The processor has a register based architecture (2 address). Each task has its own 8
register bank, with register 7 being the program counter (bit 15 of register 7 is the
flag which normally indicates whether the previous result was zero, but can have other
meanings for some instructions). So 128 words of memory (3F80 to 3FFF) are regis-

ters, though the registers for any unused task can be used for data or instructions.
There are two instruction formats:

| bits 15t012 [111010 [908 | 7105 | 4103 [2100 |
operation save destination | destination | source source
mode register mode register
xx11 save destination | destination 5 bit unsigned value
mode register

The meaning of the operation codes is:

0000 | ADD | add source to destination
0001 | ADC | add source to destination and set flag to value of carry
0010 | ADV | add source to destination and set flag to value of overflow
0011 | ADI | add immediate to destination
0100 | SUB | subtract source from destination
0101 | SBB | subtract source from destination and set flag to value of borrow
0110 | LSH | logical shift destination by number of bits indicated in source
0111 | SBI | subtract immediate from destination
1000 | XOR | exclusive or source with destination
1001 OR | or source with destination
1010 | MOV | move source to destination
1011 | MVI | move immediate to destination
1100 | AND | and source with destination
1101 | BIC | bitclear - and inverted source with destination
1110 | ROT | rotate destination by number of bits indicated in source
1111 | DBI | decrement destination and branch by immediate
The meaning of the save field is:
00 always save the result to the destination
01 | ns never save the result
10 | ifz save result if flag is zero
11 | ifnz save result if flag is not zero

The meaning of the mode fields is:

33

00 Rx register the register itself is used as a source or desti-
nation

01 *Rx index the register is used as the address of a source
or destination in memory

10 | *Rx++ | postincrement | like index, but the register is incremented af-
ter being used as an address

11 | *-Rx | predecrement | like index, but the register is decremented be-

fore being used as an address

7.2 Execution

The worst case is when switching from another task to an instruction with pre-decrement
or post-increement in both source and destination:

e save PC and flags (old task)

e load PC and flags (new task)

update source register

update destination register

decode instruction and address register

e fetch source/destination from memory

e execute and possibly save the result

When not switching tasks and with registers for both the source and destination then
the instruction can execute in just three clock cycles. This is the most common case.
At 54MHz (for an example implementation) this means the total processing power is
around 18 MIPS, which is a respectable speed for the simple tasks that it must handle
even when divided among 16 coroutines.

7.3 Example Adapter

When the I/0 Processor is used in the Oliver truck terminal, the ports in the adapter
circuits are defined as:

34

| port | width | decription (read)

| description (write)

0 16

task ready - each bit corresponds to
a task and if it is O then the task is
suspended and if it is 1 then the task
is ready to run

sets the task ready value

counter - is incremented at 54MHz

trigger - when this matches the
counter, task 15 is set to run

sets the sound DAC and video con-
trol (vsync, hsync, blank, burstl,
burst0)

LCD data

sets LCD data and LCD control (e,
w, 18, backlight, cs1, cs2, cs3)

sets chroma - bottom 16 bits of
the 32 bit counter that generates a
3.58MHz sine wave (previous value
is shifted up 16 bits)

keyboard columns, serial (tx1, rx1,
tx2, rx2) and bar code reader

sets keyboard column value for one
clock cycle (used for precharge),
sets tx1, sets change in rx1 to wake
up task 4, sets tx2, sets change in
rx2 to wake up task 5, sets change
in bar code reader to wake up task 8

where the 16 tasks are defined as (in order of decreasing priority):

35

| task | name description |

15 wait makes the single comparison circuit do the work of 16.
The other tasks make requests to be wakened at a specific
clock cycle (as indicated by a 16 bit counter running at
54MHz, which cycles every 1.21 ms). The comparison is
set to the value of the soonest requested cycle and then
the task goes to sleep. When it wakes up it also wakes
up the indicated task (though since that has a lower pri-
ority it will have to wait for task 15 to finish its job first),
and it finds the next soonest requested cycle and sets the
comparison register to that.

14 addWait receives a request from other tasks to be woken at a given
clock cycle and then changes the tables used by task 15 so
this will happen. Care is taken so that being interrupted
by task 15 doesn’t cause a conflict

13 videoBuf reads four words from memory into the video buffer

12 videoV generates the vertical timing for the video. It can also
change the program counter for task 11 (which is sus-
pended at this point) to select between different kinds of
horizontal lines

11 videoH generates the horizontal timing for the video. It wakes up
task 12 once per line

10 | videoChroma | accepts requests from the main processor to change the
setting for the chroma frequency

9

8 barcode detects pulse widths in the bar code reader input

7 led sends data to the liquid crystal display

6 sound reads a byte of memory and sends it to the audio DAC

5 com2RX receive data for serial port 2

4 comlRX receive data for serial port 1

3 com2TX transmit data for serial port 2

2 com1TX transmit data for serial port 1

1 keyboard scans the keys to check for any change

0 rtc keeps track of the real time

36

Chapter 8

Testing

There are two situations that must be addressed: finding problems with the design itself
during the development phase and separating the good chips from the bad ones during
fabrication. In addition, it would be nice if during normal operation there are resources
to help with low level software development.

Implementations using FPGAs don’t have to worry about manufacturing defects
since the chip was fully tested before shipping using entirely different methods from
the ones described below. And booting is much simpler since the memories in a FPGA
can be initialized to any desired value during programming, while in an ASIC they
have unknown values after reset and must be explicitly loaded. Since a solution for
ASICs also works for FPGAs (even if it is overkill), a single design was created for
both implementations.

The strategy adopted includes making subcomponents in the processors address-
able from the internal network and adding a special ROM to one of the I/O Processors.
After reset, that processor starts executing code from that ROM. An external signal can
select between a short test plus boot or an extensive test. The sequence for both is very
similar:

1. a checksum for the test ROM is generated. If different than expected, indicate
failure

2. do simple tests for internal network. If they fail, indicate it
3. pseudo random test vectors for I/O Processor blocks are generated

4. results are compared among all I/O Processors. If they don’t match, indicate
failure

5. pseudo random test vectors for Stack Processor blocks are generated

6. results are compared among all Stack Processors. If they don’t match, isolate
fault and indicate partial failure

7. do simple tests for memory controller. If they fail, indicate it

37

8. do simple tests for PCI interface. If they fail, indicate it

9. load all memory blocks from external Flash memory

The addressing of the subcomponents allows test vectors to be written to a single block
or to be broadcast to all equivalent blocks. Storing the test vectors in the ROM would
make it far too large, so a pseudo random generator is used instead. The expected
results are also missing from the ROM but since there is more than one each of the
I/0 and Stack Processors, a simple comparison of the results is enough to determine
if they are good or not. The probability of two different processors having exactly the
same defect so that the wrong results always match is extremely low. When there are
more than two processors, it is even possible to determine which one of them is bad.
For the I/O processor that doesn’t matter since the whole chip is unusable in that case,
but for Stack Processors it is possible to still use the component but with a reduced
performance. This allows the fabrication yield to be higher than it normally would be.

38

A: Document History

| Date | Changes

5 Aug 05
added indirect instructions for blocks and eliminated tail send and
delegate instructions in anticipation of major changes to chapter
3
changed opcode encoding
eliminated project log
changed tag encoding

25 Jul 05
changed jumps to use word addresses instead of byte addresses

27 Jun 05
changed opcode enconding to be a little more uniform at the cost
of separating the bits the indicate the selector for special sends
added RawALU hardware object to get around tag checking for
32 bit implementations

10 May 05
moved stack instructions back to special sends to speed up decod-
ing

28 Apr 05
moved description of I/O Processor to its own chapter closer to
the end

39

12 Apr 05

removed 15+1 and 30+2 datapath options

changed I/O Processor to a PDP-11 style design

4 Dec 04

pop instruction added (not really need, but nice to have)

instructions for MEM changed to keep state in the current con-
text, so the example was changed as well

25 Nov 04

added description of “return stack” to the execution model

eliminated the “no names” free hardware license, replacing it
with a “publish previous version” model

added description of configurations

12 Nov 04

changed instruction cache format for narrow width machines,
eliminating the alternate PIC entry format

18 Oct 04

rearranged bytecodes: replaced negative extensions and iLit in-
structions with the four number instructions, added JLit, moved
CTRL special sends to Stack instructions block

added object/map association options

added alternate PIC entry format for narrow width machines

20 Sep 04

replaced PCI interface with I/O Ring

eliminated comment about patents and replaced “preliminary ver-
sion: do not distribute” with “work in progress” on the cover

9 Sep 04

added definition for simplicity in project style

40

16 Aug 04

moved * and / instructions from ALU to MAC

13 Aug 04
changed “path” to “map” in object model figure to be compatible
with the instruction cache figure
created Bibliography
added small space around tables
initial text about the architecture and instruction cache
12 Aug 04
changed processor interface from bus (or switches in large con-
figuration) to ring network
copied I/O Processor description from Swiki
added some text to Testing
4 Aug 04
added object model figure
30 Jul 04
added testing chapter and removed test from configuration
added project log appendix
28 Jul 04
added security to object model
27 Jul 04
added composite to object model
26 Jul 04

added object model to data cache explanation
changed basic instruction explanation from list to table

more text in the introduction

41

23 Jul 04

added the document history

21 Jul 04

added drawing of instruction cache levels

more text in the introduction

19 Jul 04

added drawing of small and large configurations
added drawing of stack processor and I/O processor
added configuration options

initial text for introduction

fixed scale of instruction set drawing

17 Jul 04

created this document by copying two drawings and description
of architecture and instruction set from an email

created chapters and abstract

changed encoding of instruction set

42

Bibliography

[1] “An Object-Based Memory Architecture” Ifor Williams and Mario Wolczko. In
Implementing Persistent Object Bases: Proceedings of the Fourth International
Workshop on Persistent Object Systems, Alan Dearle, Gail M. Shaw, and Stanley
B. Zdonik, editors, pages 114-130. Morgan Kaufmann Publishers, Inc., 1991.

[2] “Efficient Implementation of the Smalltalk-80 System” L. P. Deutsch and A. M.
Schiffman. In Proceedings of the 11th Annual ACM SIGACT News-SIGPLAN
Notices Symposium on the Principals of Programming Languages. Salt Lake City,
Utah, January 1984.

[3] “Optimizing Dynamically-Typed Object-Oriented Programming Languages with
Polymorphic Inline Caches” Urs Holzle, Craig Chambers, and David Ungar. In
ECOQP ’91 Conference Proceedings, Geneva, Switzerland, July, 1991. Published
as Springer Verlag LNCS 512, 1991.

43

