

1

How to Program in Self 4.1

Manual by:

David Ungar

Copyright (c) 1995,1999, 2000, Sun Microsystems, Inc. and Stanford University. All Rights Reserved.

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA

R

ESTRICTED RIGHTS LEGEND:

Use, duplication, or disclosure by the government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rights in Technical Data and Computer Software Clause at DFARS
252.227-7013 (Oct. 1988) and FAR 52.227-19(c) (June 1987).

SOFTWARE LICENSE:

 The software described in this manual may be used internally, modified, copied and distrib-
uted to third parties, provided each copy of the software contains both the copyright notice set forth above and the dis-
claimer below.

DISCLAIMER:

 Sun Microsystems, Inc. makes no representations about the suitability of this software for any pur-
pose. It is provided to you “AS IS”, without express or implied warranties of any kind. Sun Microsystems, Inc. dis-
claims all implied warranties of merchantability, fitness for a particular purpose and non-infringement of third party
rights. Sun Microsystems, Inc.'s liability for claims relating to the software shall be limited to the amount, if any of the
fees paid by you for the software. In no event will Sun Microsystems, Inc. be liable for any special, indirect, incidental,
consequential or punitive damages in connection with or arising out of this license (including loss of profits, use, data,
or other economic advantage), however it arises, whether for breach of warranty or in tort, even if Sun Microsystems,
Inc. has been advised of the possibility of such damage.

1 Introduction

The Self programming environment provides facilities for writing programs, and the transporter
provides a way to save them as source files. Of all the parts of Self, the programming environment
probably has the least research ambition in it. We simply needed to concentrate the innovation in
other areas: language design, compiler technology, user interface. The Self programming environ-
ment strives to meet the high standard set by Smalltalk’s, but with a more concrete feels. The trans-
porter, on the other hand, is somewhere in-between completely innovative research and dull
development. It attempts to pull off a novel feat—programming live objects instead of text—and
partially succeeds. Its novelty lies in its view of programs as collections of slots, not objects or
classes, and its extraction of the programmer's intentions from a web of live objects.

Since Self 4.0, the environment has evolved a little—mostly in the form of new affordances. On
the Macintosh, Self 4.1 uses option-click for a middle-mouse click, and uses command- (the apple

2

How to Program in Self 4.1 1/21/00 Browsing Concepts

key) click for the right button click. So wherever the text says “left-button-click” just click with the
mouse, where it says “middle-button click” hold down the option key and click with the mouse,
and where it says “right button click” hold down the command key and click with the mouse. I use
a Kensington Turbo Mouse with the buttons mapped appropriately. These mappings are defined in
Self, so you can change them by editing the

whichButton:

 method in the

initialization

category in traits

ui2MacEvent

.

2 Browsing Concepts

2.1 Introducing the Outliner

Objects in the Self 4.1 environment are represented as

outliners

, which can expand to show in-
creasing levels of detail. One of these objects has been designed to provide a convenient context
for typed-in commands, and so it is called the shell. If the shell is not already present on your
screen, you can summon by pressing the middle mouse button on the background and selecting

shell

.

In Self 4.1, outliners now sport three small buttons in the top-right-hand corner labeled “/\”, “E”,
and “X”. These buttons summon the object’s parents, add an evaluator text region to the bottom of
the outliner, and dismiss the outliner. Press the “E” button to get an evaluator.Type

anExample-
Object

 into the evaluator (it will already be selected) and hit the

Get it

button (or type meta-
return on UNIX:

The result object appears in your “hand” raised above the screen as if you were dragging it with the
left button. Just click the button to set it down.

3

How to Program in Self 4.1 1/21/00 Browsing Concepts

As with most other things on the Self screen, the left button picks it up and moves it. (For buttons
and other things that use left-button for other purposes, you can grab them with marquee selection
(really the

carpet morph

 in Self) or with the “Grab” item on the right-button menu.)

2.1.1 Expand and Collapse

Left-click on the triangle

†

 to expand the object and see more information:

Now it shows a summary of modules containing the slots in this object (just

programmingExam-
ples

 here), four slots, and a category containing more slots, although those slots are not shown
yet.

†

Double-clicking on the triangle will expand (or contract) all levels instead of just a single level. (This feature was
added in Self 4.1.2.)

4

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.1.2 Categories

Clicking the top triangle now would collapse this object outliner, but instead look inside the cate-
gory by clicking its triangle:

And, one more click expands the subcategory:

2.1.3 Slots

The little icons on the right edges of the slots reveal the type of slot: for a method slot (a slot
containing a method), for a constant slot (a slot containing a data object), and for an as-
signable slot (a pair of slots containing a data object and the assignment primitive). In order to save
space, the data slot and its corresponding assignment slot are lumped together. (In other words in

5

How to Program in Self 4.1 1/21/00 Browsing Concepts

addition to the visible slot named

aCategorizedVariable

containing 17, there is another,

in-
visible

 slot named

aCategorizedVariable:

containing the assignment primitive.)

To look at the object contained in a data (constant or assignable) slot, just click on its icon. But if
the slot is a method, clicking its icon opens up a text editor on its source. For example, clicking on
the icon at the right of the whoAmI box opens a text editor displaying its source (and typing con-
trol-L widens the object to show all the text in the selected window):

2.1.4 Text Editors

The background of the editor is lighter than the outliner as a whole, and this difference indicates
that this editor is the current typing focus: no matter where the mouse is you can type into this ed-

6

How to Program in Self 4.1 1/21/00 Browsing Concepts

itor. A left-click on another editor will select that one as the typing focus, and to indicate that it is
no longer the focus, this editor’s the background will change to match the outliner:

The white triangle in the lower-right corner of the editor (which can barely be seen in the printout
of this document) can be dragged to resize the editor.

Someone has done a poor job of indenting this method, so fix it by clicking to the left of the capital-
I and deleting two spaces:

resize
triangle

green

red

7

How to Program in Self 4.1 1/21/00 Browsing Concepts

The red and green buttons that just appeared indicate the text has been changed; it no longer re-
flects the source code of the real method. Hitting the red button will cancel the changes, while hit-
ting the green button will accept them and change the method:

Self text editors will honor the cursor arrow keys on the Sun keyboard,

copy, paste,

 and

cut,

and many emacs-style control characters:

†

Table 1 Partial list of control characters in Self text editors

Character Effect

control-a move to start of line

control-b back one character

control-d delete next character

control-e go to end of line

control-f forward one character

control-k kill to end of line

control-l expand the text editor to show the whole text

control-n go to next line

control-o open a new line after the cursor

control-p go to previous line

control-t transpose characters

control-w erase previous word

control-y yank text from past-buffer to editor

delete, backspace,
or control-h

erase-last-character

meta-return accept

†

Sorry, no Macintosh command-key shortcuts have been implemented yet. Send me your fixes!.

8

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.1.5 Dismissing Objects

There are four separate ways of dismissing an outliner (or for that matter, anything) from the Self
desktop:

• Object outliners: Push the “X” button at the top-right-hand corner.

• Drag it to the trash: left-drag on the outliner till the mouse is over the trash can, then
release the mouse-button.

• Dismiss it via the right-button menu: hold down the right button over the outliner, move to the

Dismiss

 button, then release.

• The Carpet Morph: start above (or below) and to the left (or to the right) of the outliner, over
the background. Hold down the left button and sweep out an area that completely contains the
outliner, then release the left button. The outliner should now be surrounded by a rectangle.
Use the middle mouse button inside the rectangle to select

Dismiss

.

The last two methods, dismissing from the right-button menu, and marquee selection with the car-
pet morph, come in especially handy with things like buttons and menus because such morphs can-
not be grabbed with the left-button.

9

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.2 Menus in the Outliner

Many other operations are available on the outliner by using the middle-button menu on the part of
the outliner to be affected. For example

anExampleObject

 has many regions and here are some
of them:

Click on the desired part of the object, be it object, category, slot, text editor, or annotation (anno-
tations will be explained later).

The whole object:

A single slot

A category

A single slot

The text editor

10

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.2.1 The Evaluator

Try out the

whoAmI

 method. Push the “E” button in the top-right of the outliner:

The receiver of any messages sent from an evaluator, or indeed any text editor (via

Do It

 and

Get

It

 in the editor’s middle-button menu) in an object outliner is the object itself.

†

 Type

whoAmI

 into

†

However, in a stack frame in the debugger (described below), the receiver of a message is the same as the receiver
for the stack frame.

11

How to Program in Self 4.1 1/21/00 Browsing Concepts

the evaluator and hit the

Get it

button (or select the

Get It

 from the text editor menu), to send
the message and get back the result:

Move the result

†

 out of the way and left-click to set it down.

†

I am revising this for Self 4.1 on my trusty Mac, and Self does not implement environment variables here.

12

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.2.2 Adding a slot

Try one more change: adding a slot to the category “

a category of slots.”

 Hold the cursor
over the words

a category of slots

 and select

Add Slot

 from the middle-button menu.

13

How to Program in Self 4.1 1/21/00 Browsing Concepts

After selecting

Add Slot

 a space for a new slot will appear in the object:

14

How to Program in Self 4.1 1/21/00 Browsing Concepts

Each line shows the syntax for a different kind of slot. Create a simple variable by typing

me<-

’Gumby’

†

 and hitting the green button to accept the change:

†

Since all that stuff in the text editor was initially selected, your typing conveniently replaced it all.

15

How to Program in Self 4.1 1/21/00 Browsing Concepts

After releasing the green button, it stays down to let you know that it is still working. After a few

seconds the slot appears:

†

†

If you examine the slot’s annotation (available via the slot menu) it will show that the system has guessed that the
new slot (named “me”) should be saved in the “programmingExamples” module, and that instead of saving its actual
contents, the slot should just be initialized to the string ‘Gumby’.

16

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.3 Debugger

Explore the Self debugger. Start by scrambling the send to

environmentVariable:IfFail

 as
if you had misspelled it.

Press the green button to accept the change, then hit the

Get it

button. This should break some-
thing! In fact, instead of the result of the message, a Self debugger will materialize:

17

How to Program in Self 4.1 1/21/00 Browsing Concepts

The debugger has a label to indicate which process ran aground, a status indication shown in blue,
some buttons for controlling the process, and a collapsed outliner for the stack. Expand the stack:

The stack filters out uninteresting frames by default.

†

 The debugger assumes that the first method
you want to see is the one based on the text in the evaluator, and since the stack grows upwards this
oldest frame appears at the bottom. It has no method name, and contains the code

whoAmI

. That
method called

whoAmI,

 whose code is too long to show next to the slot button, and that method
called

evnironmentAt:IfFail:

 because we just sabotaged it! Of course there is no such meth-
od, but Self creates one dynamically to handle the error.

The little boxes represent the receiver and arguments of the methods on the stack. Get the receiver
of the

evnironment...

 message. Click on the box to the left of the word

evnironmentVari-
able:

 (the one labelled “...bal os” i f you are running on the Macintosh):

† Since the Self compiler inlines calls automatically, Self code tends to be written in a highly-factored, deeply-nested
style. Thus, the debugger filters out stack frames that seem to be unimportant. If it ever filters out the frame you need
to see, there is a “Don’t filter frames” entry in the stack’s middle-button menu.

18

How to Program in Self 4.1 1/21/00 Browsing Concepts

This object represents the interface to the Macintosh operating system. The little button with the
apostrophe in the top-left-hand corner indicates that this object has a comment. Push the button to
show (or hide) the comment:

(To automatically resize the outliner to show all the text, press control-L.) To see one of Self’s
scroll bars, grab the comment’s resize triangle (with the left-button) and move it up a bit:

The affordance that appears on the right of the text is the scroll bar, and you can either drag on the
little black line or just click in the bar to scroll the text up or down.

Push the little apostrophe button again to hide the comment. Now, you could expand this object to
find the correct spelling of the evnironment... message. But instead, pretend that all you remember
is that it has the word “Variable” in it somewhere. So, use a facility called Find Slot that takes
a pattern and an object, and finds any matching slots in that object or its parents. Use the middle-
button on the outliner’s title (macOSGlobals os) to get the object menu and select Find
slot...

scroll bar

19

How to Program in Self 4.1 1/21/00 Browsing Concepts

Double-click on the word “foo” to select that field for editing. (The same trick works on slot
names)

Since we are searching for a method with “Variable” in its name, backspace (the delete key on the

Mac) three times† to erase the “foo” type in *Variable*, hit the green button, and then hit the
triangle to start the search (if you make a typing mistake, you can double click the text to make it
editable again). The triangle will blink a bit while it is searching (one could do other things in the
meantime during a long search), then the enumerator will show the match(es):

† One rough edge remaining in the Self user interface is the existence of two test editors, and this one does not imple-
ment multi-character selection, sigh. Or, you could type control-A to go the start, and control-K to delete the whole
field, sigh.

20

How to Program in Self 4.1 1/21/00 Browsing Concepts

Clicking on the little square button(s) would show the exact method(s). But, for our purposes, just
knowing the name is enough and now you have to fix it. So back to the debugger and click on the
method button on the right in the whoAmI slot to expand the stack frame for the whoAmI method:

Now the debugger shows the source of the method, with the actual message being sent highlighted.
(In this case it is just the whole thing.) One of the conveniences in the Self programming environ-
ment is that you do not have to go back to the original method to fix it, but can just fix it here (fol-
lowing the grand tradition of Lisp and Smalltalk programming environments). So use the left
button to select the “vn” and type “nv” instead, then hit the green button to accept the change. The
green button will stay in a bit longer because when a method is changed from the debugger, every
slot pointing to that same method is made to feel the change—the method is changed in place (see

21

How to Program in Self 4.1 1/21/00 Browsing Concepts

the figure below). This feature lets you change a method in a clone and simultaneously affect the

prototype, if you are putting your methods in prototypes instead of traits. Changing a method in an
ordinary outliner would just affect that one object, even if other objects had been cloned from it.
This rule avoids unintentional changes. The more global kind of change performed by the debug-
ger takes a little longer. When it is accomplished, the red and green buttons will disappear:

Changing a method in an object outliner vs. in a debugger
Object Outliner, before change Debugger, before change

object 1

object 2

old method

Object Outliner, after changing object 2 Debugger, after change

object 1

object 2

old method

debugger

object 1

object 2

old method

debugger

new method

object 1

object 2

old method

new method

22

How to Program in Self 4.1 1/21/00 Browsing Concepts

Now os is highlighted to show that the process is about to send “os” to implicit-self. Try the Step
button, which performs a single message send. After hitting the Step button twice (and a control-
L to widen the debugger), the process will have entered the environmentVariable:IfFail:
method:

23

How to Program in Self 4.1 1/21/00 Browsing Concepts

This method is not too interesting (especially on the Macintosh), so leave the debugger by hitting
Continue and letting the process finish.

Congratulations on making through the interactive tutorial. In the remainder of this manual, we
will dive deeper into the programming environment for readers who want to write real programs in
Self.

Here is more information on the debugger for future reference:

In addition to the buttons, each frame in the debugger has some items to control the process in its
middle-button menu:

Table 2 The Debugger Buttons

What it says What it does

Continue Resumes running the process

Step Perform one message send (skipping over trivial accesses and assignments); Steps into the
called method.

Step Lexical Execute messages until control returns to the same lexical method, or until this method exits.
Very useful for methods with blocks.

Next Performs a message send and any messages in the called method; Steps over the called method.

Finish Frame Finishes running the topmost method.

Abort Kills off the process and dismisses the debugger.

Table 3 Process control items in the activation middle-button menu

What it says What it does

Step Top frame: same as step button, not top frame: Finish any called methods.

Next Same as next button.

Retry Cut back the stack to this frame, then continue the process.

Revert Cut back the stack to this frame.

Finish Finish this frame.

24

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.4 Enumerators

In addition to the Find Slot enumerator, Self has other ways to find things:

The copy-down and module enumerators will be covered later.

The other enumerators can be summoned from several places: the outliner menu, the slot menu,
and the text editor menu. As a shortcut, selecting a whole expression in the text editor and then ask-
ing for an enumerator will bring up the enumerator to search for the outermost message send in the
expression. So if you select the following expression: aSet findFirst: elem IfPresent:
[snort] IfAbsent: [sludge] and choose implementors from the text editor menu, you will
get an Implementors enumerator ready to search for findFirst:IfPresent:IfAbsent:. Of
course, you can always change the search target by double-clicking and editing the text. The text
editors also implement a host of handy double-clicking shortcuts.

Table 4 Enumerators

Name Function

Implementors Finds all the slots with a given name.

Implementors of : Finds all the slots with the given name that take an argument (for read/write slots only).

Senders Finds all the methods that send a message with a given name.

Senders of : Finds all the methods that send the corresponding assignment message (read/write slots
only).

Senders in family
(Senders of : in family)

Finds all the methods in this object, its ancestors, and descendants that send a message
with a given name (or the corresponding assignment message).

Find Slot Starting from a designated object, finds all slots in that object and its ancestors whose
name matches a given pattern. Case is ignored, “?” matches any character, “*” matches
any series of zero or more characters. Also comes in “of :” and “in family” flavors.

Methods Containing Finds methods containing the specified string. Similar to grep without wildcards.

Copied-down Children Finds objects copied-down (see below) from this one.

References Finds slots that contain references to the selected object.

Slots in Module On the module menu (see below); shows all slots in a given module.

Added or Changed
Slots in Module

On the module menu (see below); shows all slots added or changed in the module since
it was filed out.

Removed Slots in
Module

On the module menu (see below); shows the names of the slots removed from the mod-
ule since it was last filed out.

Expatriate Slots On the changed module menu (see below); shows all slots in filed-out objects that do
not themselves specify a module. These slots will not be filed out.

25

How to Program in Self 4.1 1/21/00 Hacking Objects

Finally there is one last detail about enumerations: many contain a check-box to choose Well-
known only. This is always checked by default to speed things up. When checked, only well-
known (i.e. filed-out, see below) objects are searched, which is much faster.

3 Hacking Objects

Hacking—the discipline of making fine furniture from trees using an axe.

In going through this document, you have already added a slot and edited methods in both object
outliners and debuggers. In addition Self 4.1 has many other ways to change an object:

Table 5 Ways to change an object

Ways to change an
object

How Why

Removing, Moving, Copying Categories

Removing a category. “Move” in category middle menu, then drag the category to
the background or the trash can.

Removing a category

Add slot or category to
object or category.

“Add Category” in object or category middle menu,
then type in the new category name, then hit green button to
accept.

Adding a new category.

Moving a category. “Move” in category middle menu, then drag to another
object.

Copying a category.

Copying a category. “Copy” in category or category middle menu, then drag the
category to another object.

Copying a category.

Removing, Adding, Moving, Copying Slots

Removing a slot. “Move” in slot middle menu, then drag the slot to the back-
ground or the trash can.

Removing a slot

Add slot to object or
category.

“Add Slot” in object or category middle menu,
then type in the new slot name, “=” or “<-”, and contents of
slot (or just name alone for variable slot containing nil),
then hit green button to accept.

Adding adding a new
slot containing data,
code, a prototype, or a
traits object.

Moving a slot. “Move” in slot middle menu, then drag to another object. Moving a slot.

Copying a slot. “Copy” in slot or category middle menu, then drag the slot
to another object.

Copying a slot.

Changing a slot

26

How to Program in Self 4.1 1/21/00 Hacking Objects

Edit a slot “Edit” on a slot middle-button menu, then make any
changes in the text editor, then hit green button to accept
changes.

To change the contents
of a constant data slot,
or to change contents
and set initial value at
same time, or to change
a slot from data to
method or from con-
stant to variable.

Edit slot name or its
argument names

Double-click on the name of the slot, wait for red and green
buttons to appear on the right of the name, edit the name,
then hit the green button.

To change a slot’s name
or the names of its
arguments.

Change a method in a
slot.

Click on the method icon button on the right of the slot to
open a text editor on the method. Make the changes, then
click on the green button to accept them.

To fix a bug in a
method.

Change the visibility of
a slot

On the slot’s middle menu choose “Make Public,” “Make
Private,” or “Make Undeclared.”

The Self interface uses
bold, normal, and sans-
serif fonts to indicate
public, private, and
unspecified slots.This
distinction carries no
semantics, but serves to
record the program-
mer’s intentions.

Adding a Comment

Add a comment to an
object or slot

“Show Comment” in the object or slot middle menu to open
up a comment text editor, then typing in the comment, then
hit the green button to accept it. If an object or slot already
has a comment, it can be shown/hidden by hitting the small
button labeled with a single quote.

To amuse and intrigue
those who follow.

Annotating an Object

Change creator annota-
tion of an object

“Show Annotation” in object middle menu to expose object
annotation information,
then click on creator path field and typing in desired creator
path.,
then hit green button to accept annotation.

Setting creator path
tells transporter which
slot “owns” this object,
and tells environment
what to name the
object.

Set creator of contents
of a slot to that slot

“Set Creator” in slot middle menu. See above.

Table 5 Ways to change an object

Ways to change an
object

How Why

27

How to Program in Self 4.1 1/21/00 Hacking Objects

Change copy-down
information

“Show Annotation” in object middle menu to expose object
annotation information,
then click on copy-down-parent field and type in desired
copy-down-path., copy-down selector and slots to omit)
then hit green button to accept annotation.

Simulates subclassing
by allowing an object to
contain copies of the
slots in another object.
When copy-down-par-
ent has slots added/
changed/removed, the
change propagates to
the copied-down chil-
dren.

Change the object’s
“isComplete” flag

“Show Annotation” in object middle menu to expose object
annotation information,
then push one of the isComplete radio buttons,
then hit green button to accept the annotation change.

After building a new
prototype, set isCom-
plete to get the envi-
ronment to show its
printString, and to
get the transporter to
use its storeString.

Annotate a slot

Set the module mem-
bership of a slot, the
slots in a category, or
the slots in an object.

Select “Set Module” from the middle menu of a slot, cate-
gory, or object, then (for object or category) indicate which
slots you want to change by choosing which module they
currently belong to, finally select a new module to put the
slots in.

To ensure that slots are
filed out in the correct
source file.

Type in or examine the
module for a single slot

“Show Annotation” on the slot middle menu to expose the
annotation, then click on the module editor, type in the mod-
ule name, then click the green accept button.

Save as above.

Change slot initial con-
tents

“Show Annotation” on the slot middle menu to expose the
annotation, then click on the “Follow Slot” button, or type
the desired initial value expression into the ‘Initial Con-
tents” editor, then hit the green accept button.

To have the transporter
record the current con-
tents of a slot, choose
“Follow Slot.” To have
it ignore the current
value and just record a
given expression for the
slot’s initial value use
the “Initial Contents”
option.

Table 5 Ways to change an object

Ways to change an
object

How Why

28

How to Program in Self 4.1 1/21/00 The Transporter

4 The Transporter

The transporter has been built in order to move programs from one world of objects to another. so,
you can ignore it as long as you work with just one snapshot. However, if you want to give your
program to someone else, or save it as source, or read it in to a newer snapshot, you will need to
learn about the transporter.

4.1 The Traditional Schism between Program and Data

What is a program? In most systems it is a piece of text, although in more advanced environments
it may have structure. It is a description that can be used to create an activity, a running program,
that can then operate on data. In the conventional view:

This model grew up in an era where computers were too small to host both compilers and applica-
tions at the same time. Although it has some virtues it makes other operations very hard: it is hard
to include data, such as hand-drawn icons, directly into a program, and it is hard to write applica-
tions whose data domain is really programs.

4.2 Data = Program

For Self, we have gone a different way, following in the footsteps of Smalltalk and Lisp:

A Self program consists of live objects.

Self has no edit/run mode. To change an object, you do not retreat to a source file, or even to a class,
you just change the object itself. This immediacy and concreteness lessens the cognitive burden on
the programmer, smooths the learning curve, and hastens gratification.

However, this stance creates a big problem the moment you need to move a program from one
world of objects to another; it is very hard to pin down what to do. For example, suppose an object
contains a slot with 1024 in it. Should that value be copied literally? Perhaps it is the result of some

Table 6 The Schism between Program and Data

Program Data

Who can change it The programmer The user

When can it change At programming
time

At execution time

How is it changed With a text editor By running a pro-
gram

29

How to Program in Self 4.1 1/21/00 The Transporter

computation (such as the width of the current screen) and should be recomputed instead. There
simply is not enough information in a Self object to extract programs from Snapshots.

4.3 Changes vs. Pieces

Earlier in the project we considered constructing a calculus of changes that could be used to repre-
sent programs, and then moving programs by reapplying the changes to the new snapshot. But, we
had enough on our plate and rejected this approach as too ambitious to tackle without a dedicated
graduate student.

Instead, we decided to represent programs as pieces that could be filed out of a snapshot and filed
in to another. To allow us to merge changes to the same program, we decided to represent its pieces
as Unix source files amenable to RCS. The Self Transporter was built to save programs as source
files.

4.4 Objects vs. Slots

But what is a program? Although a new program frequently involves creating new objects, it also
can mean added slots to existing objects. For example, a program to find palindromes might add a
slot to traits string called isPalindrome. So we decided to refine the granularity of the

Transporter to the slot level; each slot has an annotation† (its module) which gives the name of the
source file containing that slot. This hair- or rather object-splitting implies that one object may be
built incrementally as the result of reading several files, and so the transporter endeavors to keep
the order that the files are read in as independent as possible. Since each object can possess slots
in different modules, the outliner shows a summary of the modules of an object, sorted by frequen-
cy.

Turned around, a module can be viewed as a collection of slots, plus some other information: each
module also includes a directory, a list of submodules to be read in whenever it is read, and post-
FileIn method to be run whenever the module is read. These data allow modules to be organized
hierarchically by subsystem, for example the allUI2 module includes all the modules in the ui2
system.

Now here comes the nice part: the Self environment incrementally maintains a mapping from mod-
ules to slots, and a list of changed modules, which can be obtained from the background menu.
When you make a change the appropriate module will be added to the list, and can be written as a
source file by clicking its w button. The middle-button menu on the changed modules and individ-
ual modules contains a host of useful entries for understanding what has been changed.

† The Self Virtual Machine provides for annotations on slots or whole objects. While the annotations do not influence
program execution, they can be accessed and modified by Self’s reflective facility, mirrors. Annotations are used to
hold many things, including comments on objects and slots.

30

How to Program in Self 4.1 1/21/00 The Transporter

4.5 What to Save for the Contents of a Slot

At this point, the reader may be thinking “So modules know which slots they include, but how do
they know which objects to include?” After all, when the transporter saves a slot in a file what can
it put for the contents of the slot? Here is where the transporter runs smack into the problem of not
enough information, and a variety of means have to be used. As shown in the flowchart below:

How the transporter files out objects

Is slot
annotated with
an initializer
expression?

Write out
that expression

yes

Does slot
contents have
valid creator?

yes

Is this slot
the creator?

no

no
yes

Refer to the
creator

Is slot
contents
complete?

yes

Is result
storeStringNeeds
the same
object? no

no yes

Send
storeStringIfFail:

suceess

failure

Use the
storeString

File out an
expression to
create a new empty
object if this slot
does not exist yet.

Is slot contents
complete and

isImmutableForFilingOut

no

yes

31

How to Program in Self 4.1 1/21/00 The Transporter

• Sometimes the programmer does not want to store the actual contents of a slot, but instead
wants to store an initialization expression. This intention is captured with another annotation
on a slot: each slot can either be annotated Follow Slot or Initialize To Expression
In the latter case, an initializer is also supplied.

• Even though the transporter is supposed to follow the slot, it may contain an object that is cre-
ated by another slot. For example, the parent slot in a point should just refer to traits
point rather than recreating the traits object. This information is captured by a Creator an-
notation on each object that gives the path from the lobby to the slot intended to create the ob-
ject. In this case, the transporter just files out a reference to the object’s creator, cleverly
enough so that the actual creator slot does not need to have been already filed in. On the other
hand, if an object is immutable, its identity is not important. If an object is annotated as is-
Complete† the transporter sends it isImmutableForFilingOut and if that message re-
turns true, the transporter never files out a reference. For example, integers would answer
true to this message.

• If the contents of the slot is a simple (usually immutable) object like 17, 3@4, or ‘foo’ (the
string) the transporter should just ask the object for a string to store. It does this by checking to
see if the object is annotated as isComplete to see if it is safe to send the object messages,
checks to see if this object is itself needed for the string (it would be a mistake to file out the
prototypical point as 0@0, because the x slot would never be defined), then asks the object for a
store string.To see if the object must itself be filed out, it sends storeStringNeeds and if
this message does not return the object itself it sends storeStringIfFail:. If this succeeds,
the transporter can save a data-type specific string for the object. This fairly elaborate mecha-
nism allows programmers to add new kinds of objects that transport out with type-specific cre-
ation strings.

• Finally, if it can do nothing else, the transporter creates a new object for the contents of the
slot. The object is created in a clever way so that a file that adds slots to an object can be read
before the file that officially creates the object without loss of information.

Filing out objects is too complicated, and over the past two years we have repeatedly tried simpler
schemes. However, all of the capabilities in the current scheme seem to be essential in some case.
This issue remains as a question for future work.

4.6 Copy Down

Because Self eschews classes and because the current compiler cannot optimize dynamic inherit-
ance, it is necessary to copy-down slots when refining an object. For example, the prototypical
morph object contains many slots that every morph should have, and some mechanism is needed
to ensure that their presence is propagated down to more specialized morphs like the circleMorph.
In a class-based language, this need is met by a rule ensuring that subclasses include any instance

† isComplete is used by the environment to decide when it is safe to send messages like printString.

32

How to Program in Self 4.1 1/21/00 The Transporter

variables defined in their superclasses. In Self, this inheritance of structure is separated from the
inheritance of information performed by the normal hierarchy of parent slots. Instead of including
a facility for inheriting structure in the language, Self 4.1 implements a facility in the environment,
called “copy-down.” An object’s annotation can contain a copy-down parent, copy-down selector,
and set of slots to omit. The copy-down parent is sent the message given by the copy-down selec-
tor, and (except for the slots-to-omit), the slots in the result are added to the object. Copied-down
slots are shown in pink in the outliner. For example, here are the prototypical morph and the pro-
totypical circleMorph:

The Basic Morph State category of slots has been copied from those in morph by first copying
the morph and removing all its submorphs (i.e. by sending it copyRemoveAllMorphs) and then
copying the resultant slots, omitting parent, prototype, rawBox and rawColor. The first
three of these slots were omitted because their contents had to be different; copied-down slots are
copied, they cannot be specially initialized in Self 4.1. The omitted slot rawBox is more interest-
ing; circle morphs do not need this slot at all and so omit it. Most other object-oriented program-
ming systems would not allow a subclass to avoid inheriting an instance variable.

The Self 4.1 programming environment uses the copy-down information to allow the programmer
to use a class-based style when appropriate. For example, if the programmer adds a slot to morph

33

How to Program in Self 4.1 1/21/00 Acknowledgments

the environment will offer to add it to circleMorph, too. If the programmer should use a text ed-
itor to edit the definition of morph, the circleMorph object will be changed after rereading both ob-
ject’s text files. The least convenient aspect of using copy-downs is that to do the moral equivalent
of creating a subclass, the programmer has to create two objects: a new traits object, and a new pro-
totype, and then set the object annotation of the new prototype. Perhaps someday there will be a
button to do this, or perhaps other styles of programming will emerge.

This concludes a brief tour of the Self 4.1 programming environment. Although we strove for sim-
plicity in the design of Self, its programming environment includes a fair amount of functionality
which may take a while to learn. We hope that you find the investment worth the reward.

5 Acknowledgments

The Self programming environment is the result of many people’s efforts. Lars Bak wrote the first
version of the outliner as a quick way to introduce a programming environment into the UI2 frame-
work.Randall B. Smith, Craig Chambers, Bay-Wei Chang, Urs Hölzle, Ole Agesen, John Maloney,
and Mario Wolczko, each made essential contributed essential contributions. Ole Lehrmann Mad-
sen has added a structure editor, detailed elsewhere. In addition. Ole Lehrmann Madsen bravely
learned and tested the system, Bay-Wei Chang and Ole Agesen also tested and suggested, Robert
Duvall was another early user who helped keep the volleyball games going, and Craig Chambers
beamed down support from the far north. The author ported it to the Macintosh. I would like to
thank Sun Microsystems for it support, and especially Neil Wihelm for his encouragement.

34

How to Program in Self 4.1 1/21/00 Every Menu Item in the Programming Environment

Appendix A Every Menu Item in the Programming Environment

This table only covers the middle-button menus, the right-button (morph) menu is described else-
where. It merges items from several menus: the background menu, the outliner whole-object
menu, the outliner category menu, the outliner slot menu, the text editor menu, the debugger stack
menu, the iterator object menus, and the changed module morph menu.

Table 7: Menu Items

Label Function

Add Category Adds a category to an object or category.

Add Slot Adds a slot to an object or category.

Added or Changed
Slots

On a module morph, enumerates slots added/changed since last save.

All Modules Summons a hierarchical list of all modules from the changed modules
morph.

All Slots On a module morph, enumerates its slots.

Changed Modules Summons a list of changed modules.

Children Enumerate an object’s children.

Clean Up Clean up the screen: collapse outliners and stack them on the left of the
window.

Clean Up Memory Manually initiate a garbage collection. Can help when you know you
have just freed up a bunch of space. Self also does this automatically.

Collapse All Collapses all outliners, or all categories within an outliner or category.

Copy Down Children Enumerate an object’s copy-down children.

Copy Down Parent Show an object’s copy-down parent.

Copy Copies slots, categories or text.

Core Sampler Summons an object for manipulating morphs.

Create Button For a slot, create a button to send the message to the object. The receiver
may be set by carrying the button on top of the receiver and using the
middle-button on the button. (The button is grabbed with either the car-
pet-morph or with the grab right-menu item. Bug: buttons do not mani-
fest their results.)

Cut Copies text to the text buffer.

35

How to Program in Self 4.1 1/21/00 Every Menu Item in the Programming Environment

Do Selection Evaluate the selected text, do not show the result.

Do it Evaluate the text in the editor, do not show the result.

Edit On a slot, open an editor to change its name, slot type, or contents.

Evaluator Adds an evaluator window to an object outliner.

Expand All Expand all subcategories.

Expatriate Slots On the changed module morph; shows a list of slots not included in any
module.

(Don’t) Filter Frames On a debugger stack, enable (or disable) filtering.

Find Slot Searches an object and its ancestors for slot names matching a pattern.

Find Slot of : For an assignable slot x, show all slots named x: in the object and its
ancestors.

Flush Discards cached state, e.g. the result of an enumeration.

Forget I was changed On a module morph, removes it from the list of changed modules and
clears out its record of added, changed & removed slots.

Get Module Object On a module morph summons the object outliner for the module. Useful
for editing its postFileIn method, or its revision.

Get Selection Evaluate the selected text & show the result.

Get it Evaluate the text in the editor, show the result.

Hide Annotation Hides the object or slot annotation.

Hide Comment Hides the object or slot comment.

Implementors Searches for slots of a given name.

Implementors of : For an assignable slot x, show all implementors of x:.

Load Morph From
File

Reads in a file created with the right-menu item “Save Morph to File”

Make Creator On a slot, set the creator annotation of its contents to be the slot.

Make Private Change the style of the slot to show that it is intended to be private (not
enforced).

Table 7: Menu Items

Label Function

36

How to Program in Self 4.1 1/21/00 Every Menu Item in the Programming Environment

Make Public Change the style of the slot to show that it is intended to be public (not
enforced). Adds a comment for posterity.

Make Undeclared Change the style of the slot to show that no clear intention exists as to its
visibility. (A Self exclusive!)

Methods Containing Searches for all methods containing a string.

Move Moves slots or categories.

New Shell Summon a new shell object.

Open Factory Win-
dow

Open a new window containing handy morphs (such as a radar-view)
you can tear-off and drag to other Self windows.

Palette Summons an object for obtaining morphs for building.

Paste Pastes text from the buffer.

Quit Leave job and ride boxcars.

Radar View Summons an object for moving the current viewport around in space.

Read Module On a module morph, rereads the source file.

References Enumerate references to an object.

Removed Slots On a module morph, lists removed slot paths.

Restore Window
State

Restores the saved state of the screen.

Save snapshot Saves an image of all objects in a snapshot file. Overwrites the snapshot
file that was opened originally. Saves the previous version with a ".old"
suffix.

Save snapshot as ... Lets you set the file name and other parameters of the saved snapshot.
For example, if you have a lot of memory, you can increase the code
cache size.

Save Window State Saves the state of the screen.

Send For a method in a concrete object, send the message to the object.

Senders Searches for methods sending a given message.

Table 7: Menu Items

Label Function

37

How to Program in Self 4.1 1/21/00 Every Menu Item in the Programming Environment

Senders of : For an assignable slot x, show all senders of x:, i.e. methods that might
assign to x.

Senders in family Searches for methods sending a given message in the selected object, its
ancestors, and it descendants.

Senders of : in family For an assignable slot x, show all senders of x:, i.e. methods that might
assign to x in the selected object, its ancestors, and it descendants.

Set Module Sets the module of a slot or group of slots.

Shell Summons an outliner on the shell. Used for evaluating expressions.

Show All Frame On a debugger stack, disable filtering.

Show Annotation Shows the object or slot annotation.

Show Comment Shows the object or slot comment.

Show Morph For morph object outliners, summons the morph that the object imple-
ments.

“Subclass” Me Appears on the object menu. Automates several steps equivalent to sub-
classing in Smalltalk: Creates a copy-down child of the selected object
and makes a new parent object for the new child that inherits from the
selected object’s parents. It also sets some of the annotations for trans-
port.

The box at the top. Pins up the menu.

Toggle Spy Toggles an X Window spying on the Virtual Machine. A nice source of
reassurance.

Traits Family Show an inheritance hierarchy textually. Only works on certain objects
on alternate Thursdays.

Write Snapshot Saves all the objects in the Self world to a (fairly large) file.

Table 7: Menu Items

Label Function

