How to Program in Self 4.1

Manual by:

David Ungar

Copyright (c) 1995,1999, 2000, Sun Microsystems, Inc. and Stanford University. All Rights Reserved.

Sun Microsystems, Inc.
901 San Antonio Road
Palo Alto, CA 94303 USA

RESTRICTED RIGHTS LEGEND: Use, duplication, or disclosure by the government is subject to restrictions as
set forth in subparagraph (c) (1) (ii) of the Rightsin Technical Data and Computer Software Clause at DFARS
252.227-7013 (Oct. 1988) and FAR 52.227-19(c) (June 1987).

SOFTWARE LICENSE: The software described in this manual may be used internally, modified, copied and distrib-
uted to third parties, provided each copy of the software contains both the copyright notice set forth above and the dis-
claimer below.

DISCLAIMER: Sun Microsystems, Inc. makes no representations about the suitability of this software for any pur-
pose. It isprovided to you “ASIS’, without express or implied warranties of any kind. Sun Microsystems, Inc. dis-
claimsall implied warranties of merchantability, fithess for a particular purpose and non-infringement of third party
rights. Sun Microsystems, Inc.'sliability for claimsrelating to the software shall be limited to the amount, if any of the
feespaid by you for the software. In no event will Sun Microsystems, Inc. beliablefor any special, indirect, incidental,
conseguential or punitive damagesin connection with or arising out of thislicense (including loss of profits, use, data,
or other economic advantage), however it arises, whether for breach of warranty or in tort, even if Sun Microsystems,
Inc. has been advised of the possibility of such damage.

1 Introduction

The Self programming environment provides facilities for writing programs, and the transporter
provides away to save them as sourcefiles. Of al the parts of Self, the programming environment
probably has the |least research ambition in it. We simply needed to concentrate the innovation in
other areas: language design, compiler technology, user interface. The Self programming environ-
ment strives to meet the high standard set by Smalltalk’s, but with amore concrete feels. Thetrans-
porter, on the other hand, is somewhere in-between completely innovative research and dull
development. It attempts to pull off a novel feat—programming live objects instead of text—and
partially succeeds. Its novelty liesin its view of programs as collections of slots, not objects or
classes, and its extraction of the programmer's intentions from a web of live objects.

Since Self 4.0, the environment has evolved a little—maostly in the form of new affordances. On
the Macintosh, Self 4.1 uses option-click for amiddle-mouse click, and uses command- (the apple

How to Program in Self 4.1 1/21/00 Browsing Concepts

key) click for the right button click. So wherever thetext says*left-button-click” just click with the
mouse, where it says “middle-button click” hold down the option key and click with the mouse,
and where it says “right button click” hold down the command key and click with the mouse. | use
aKensington Turbo Mouse with the buttons mapped appropriately. These mappings are defined in
Self, so you can change them by editing the whi chBut t on: method inthei niti ali zati on
category in traitsui 2MacEvent .

2 Browsing Concepts

2.1 Introducing the Outliner

Objectsin the Self 4.1 environment are represented as outliners, which can expand to show in-
creasing levels of detail. One of these objects has been designed to provide a convenient context
for typed-in commands, and so it is called the shell. If the shell is not already present on your
screen, you can summon by pressing the middle mouse button on the background and selecting
shel | .

p“shell ~ E X

In Self 4.1, outliners now sport three small buttons in the top-right-hand corner labeled “/\”, “E”,
and “ X”. These buttons summon the object’s parents, add an evaluator text region to the bottom of
the outliner, and dismiss the outliner. Press the “E” button to get an evaluator. Type anExanpl e-

Obj ect into the evaluator (it will already be selected) and hit the Get it button (or type meta-
return on UNIX:

b “shell A B X
ankExampleObject|

Get‘ Do it Close

Theresult object appearsin your “hand” raised above the screen asif you were dragging it with the
left button. Just click the button to set it down.

panExampleObject # E| X

How to Program in Self 4.1 1/21/00 Browsing Concepts

Aswith most other things on the Self screen, the left button picks it up and movesit. (For buttons
and other things that use left-button for other purposes, you can grab them with marquee selection
(really the carpet morph in Self) or with the “Grab” item on the right-button menu.)

2.1.1 Expand and Collapse

Left-click on the triang| el to expand the object and see more information:

4 anExampleObject Al E| X
Module: programmingEBxamples
parent” traits clonable =
anUncategornized Constant 314159 =
anUncategonzedMethod wserQuery report: 'Hello, there' B
anUncategonzed Vanable 17 3

ba category of slots

Now it shows a summary of modules containing the slotsin this object (just pr ogr anmi ngExam
pl es here), four dots, and a category containing more slots, although those slots are not shown
yet.

T Double-clicking on the triangle will expand (or contract) all levels instead of just asingle level. (This feature was
added in Self 4.1.2.)

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.1.2 Categories

Clicking the top triangle now would collapse this object outliner, but instead |ook inside the cate-
gory by clicking itstriangle:

4 anExampleObject A E|X
Module: programmingExamples
parent™ traits clonable =
anUncategornzed Constant 314159 =
anUncategonzedMethod wserQuery report: 'Hello, there' B
anUncategonzed Varable 17 3
4a category of slots
aCategorizedConstant 314159 =
aCategonzedMethod userQuery report: 'Hello, there' B
aCategornzedVarnable 17 3
ba subcategory

And, one more click expands the subcategory:

4 anExampleObject A E| X
Module: programmingExamples
parent™ traits clonable =
anUncategonzed Constant 314159 =
anUncategonzedMethod wserQuery report: 'Hello, there' B
anUncategonzed Varnable 17 3
4.a category of slots
aCategonzedConstant 314159 =
aCategorizedMethod userQuery report: 'Hello, there' B
aCategonzedVarable 17 3
4.a subcategory
whoAml .. B

2.1.3 Slots

The little icons on the right edges of the dots reveal the type of slot: B for amethod slot (aslot
containing amethod), = for aconstant slot (a slot containing a data object), and 3i| for an as-
signable slot (apair of slots containing a data object and the assignment primitive). In order to save
space, the data slot and its corresponding assignment slot are lumped together. (In other wordsin

How to Program in Self 4.1 1/21/00 Browsing Concepts

addition to the visible slot named aCat egor i zedVar i abl e containing 17, there is another, in-
visible slot named aCat egori zedVari abl e: containing the assignment primitive.)

To look at the object contained in a data (constant or assignable) dlot, just click onitsicon. But if
the slot isamethod, clicking itsicon opens up atext editor on its source. For example, clicking on
theicon at the right of the whoAml box opens atext editor displaying its source (and typing con-
trol-L widens the object to show all the text in the selected window):

4 anExampleObject Al E|X
Module: programmingExamples
parent™ traits clonable =
anUncategornized Constant 314159 =
anUncategorizedMethod user Query report: 'Hello, there' B
anUncategonzed Vanable 17 3
4.a category of slots
aCategorizedConstant 314159 =
aCategonzedMethod user Query report: 'Hello, there' B
aCategorzedVarable 17 3
4 a subcategory
whoAml .. B

os environmentAt: 'LOGNAME'
| 1fFail: 'The Phantom'

2.1.4 Text Editors

The background of the editor is lighter than the outliner as awhole, and this difference indicates
that this editor is the current typing focus. no matter where the mouse is you can type into this ed-

How to Program in Self 4.1 1/21/00 Browsing Concepts

itor. A left-click on another editor will select that one as the typing focus, and to indicate that it is
no longer the focus, this editor’s the background will change to match the outliner:

4 anExampleObject A E| X
Module: programmingExamples
parent” traits clonable =
anUncategornized Constant 314159 =
anUncategonzedMethod user Query report: 'Hello, there' B
anUncategonzed Varnable 17 3
4.a category of slots
aCategorizedConstant 314159 =
aCategonzedMethod user Query report: 'Hello, there' B
aCategornzedVarable 17 3
4.a subcategory
who Aml . 8

os environmentAt: 'LOGNAME'
IfFail: 'The Phantom!' .
resize
J triangle

The white triangle in the lower-right corner of the editor (which can barely be seen in the printout
of this document) can be dragged to resize the editor.

Someone has done a poor job of indenting this method, sofix it by clicking to theleft of the capital-
| and deleting two spaces:

— - -

aCategonzedVarable ' 17 3%
4. subcategory
who Ami .. B8

green — | 0S environmentAt: 'LOGNAME'
red |IfFai1: 'The Phantom'

How to Program in Self 4.1 1/21/00 Browsing Concepts

The red and green buttons that just appeared indicate the text has been changed; it no longer re-
flects the source code of the real method. Hitting the red button will cancel the changes, while hit-
ting the green button will accept them and change the method:

aldiEegonZeqaviemnoa USET LJUETY TEPOTL. "Hedo, tere” g
aCategonzedVarable 17 3
4 a subcategory

who Aml| .. B

os environmentAt: 'LOGNAME'
IfFail: 'The Phantom'

Self text editorswill honor the cursor arrow keys on the Sun keyboard, copy, paste, andcut,
and many emacs-style control characters: '

Table 1 Partial list of control charactersin Self text editors

Character Effect
control-a move to start of line
control-b back one character
control-d delete next character
control-e gotoend of line
control -f forward one character
control-k kill to end of line
control-| expand the text editor to show the whole text
control-n go to next line
control-o open anew line after the cursor
control-p go to previousline
control-t transpose characters
control-w erase previous word
control-y yank text from past-buffer to editor
delete, backspace, erase-last-character
or control-h
meta-return accept

T Sorry, no Macintosh command-key shortcuts have been implemented yet. Send me your fixes!.

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.1.5 Dismissing Objects

There are four separate ways of dismissing an outliner (or for that matter, anything) from the Self
desktop:

Object outliners: Push the “X” button at the top-right-hand corner.

Drag it to the trash: left-drag on the outliner till the mouse is over the trash can, - then
release the mouse-button.

Dismiss it via the right-button menu: hold down the right button over the outliner, move to the
Di smi ss button, then release.

The Carpet Morph: start above (or below) and to the left (or to the right) of the outliner, over
the background. Hold down the left button and sweep out an area that completely contains the
outliner, then release the left button. The outliner should now be surrounded by a rectangle.
Use the middle mouse button inside the rectangle to select Di smi ss.

The last two methods, dismissing from the right-button menu, and marquee selection with the car-
pet morph, comein especially handy with things like buttons and menus because such morphs can-
not be grabbed with the left-button.

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.2 Menusin the Outliner

Many other operations are available on the outliner by using the middle-button menu on the part of

the outliner to be affected. For example anExanpl eObj ect has many regions and here are some
of them:

The whole object:

parent™ traits clonable =
anUncategonzed Constant 314159 =
anUncategonzedMethod user Query report: 'Hello, there' B
anUncategonzedVarable 17 3
ha.categoryofslots. ...ttt A category

' i /////)QW/}I)’?JAW//EI A singleslot
: aCategonzedVanable

- Ma subcalegory

////////////////////////////////\/\9;/ A singleslot

N

*
+*

The text editor

Click on the desired part of the object, be it object, category, sot, text editor, or annotation (anno-
tations will be explained |ater).

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.2.1 TheEvaluator

Try out the whoAm method. Push the “E” button in the top-right of the outliner:

4 anExampleObject A ix
Module: programmingExamples
parent™ traits clonable =
anUncategonzed Constant 314159 =
anUncategonzedMethod user Query report: 'Hello, there' B
anUncategonzed Varable 17 3
4.a category of slots
aCategorzedConstant 314159 =
aCategorzedMethod user Query report: 'Hello, there' B
aCategorizedVarable 17 3
4.a subcategory
who Aml .. B

os environmentAt: 'LOGNAME'
IfFail: 'The Phantom'

Get it Do it Close

Thereceiver of any messages sent from an evaluator, or indeed any text editor (viaDo |t and Get
I t intheeditor’'s middle-button menu) in an object outliner isthe object itself.T TypewhoAm into

T However, in a stack frameiin the debugger (described below), the receiver of a message is the same as the receiver
for the stack frame.

10

How to Program in Self 4.1 1/21/00 Browsing Concepts

the evaluator and hitthe Get it button (or select the Get 1t from the text editor menu), to send
the message and get back the result:

4 anExampleObject Al E|X
Module: programmingExamples
parent™ traits clonable =
anUncategonzed Constant 314159 =
anUncategorizedMethod user Query report: 'Hello, there' 8
anUncategonzed Varnable 17 3
4. category of slots
aCategornzedConstant 314159 =
aCategorzedMethod user Query report: 'Hello, there' B
aCategonzedVarable 17 3
4.a subcategory
who Aml . B

os environmentAt: 'LOGNAME'
IfFail: 'The Phantom'

whoAmI|

Gat ir ! Tia it ! Maca

Move the result’ out of the way and left-click to set it down.

T | amrevisi ng thisfor Self 4.1 on my trusty Mac, and Self does not implement environment variables here.

11

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.2.2 Addinga dlot

Try one more change: adding aslot to the category “a cat egory of sl ots.” Hold the cursor
over thewordsa cat egory of slots andselect Add Sl ot from the middle-button menu.

4 anExampleObject A E|X
Module: programmingEBxamples
parent™ traits clonable =
anUncategornized Constant 314159 =
anUncategonizedMethod user Query report: 'Hello, there' B
anUnc - 77 dable 17 3
4acat AddSlot
aCa Add Category stant 314159 =
aCa Copy nod user Query report: 'Hello, there' B
aCa Mowe ape T7
4.a s Set module...
who Aml .. B8

os environmentAt: 'LOGNAME'
IfFail: 'The Phantom'

whoAmI

Get it Do it Close

12

How to Program in Self 4.1 1/21/00

Browsing Concepts

After selecting Add Sl ot aspace for anew slot will appear in the object:

4anExampleObject Al E|X]
Module: programmingExamples
‘parent™ traits clonable =|
‘anUncategorized Constant 3.14159 =
‘anUncategorizedMethod user Query report: 'Hello, there' 8
‘anUncategorized Variable 17 3l
4.a category of slots
‘aCategorizedConstant 3.14159 =
‘aCategorizedMethod user Query report: 'Hello, there' 8
‘aCategorizedVariable 17 3
slotName = slotContents
Or

slotName <- slotContents

——————— Examples ———————-
Constants:
pi = 3.14159
greetUser = (userQuery report:
+ x = (add: x)
add: a To: b= (a+ b)

'hi') "A method body
"Binary select
take a single
"Keyworded not

one or more a

Assignables:
items <- list copyRemoveall "Can access th
it (using 'it
4.a subcategory
whoAml . 8
os environmentAt: 'LOGNAME'
IfFail: 'The Phantom'
whoAmI
Getit | Doit | Close |

13

How to Program in Self 4.1 1/21/00 Browsing Concepts

Each line shows the syntax for a different kind of slot. Create a simple variable by typing me<-
" Qunby’ T and hitti ng the green button to accept the change:

4anExampleObject AlE|X
Module: programmingExamples
parent™ traits clonable =
anUncategonzed Constant 314159 =
anUncategorizedMethod user Query report: 'Hello, there' B
anUncategorizedVarable 17 3
4a category of slots
aCategonzedConstant 314159 =
aCategonzedMethod user Query report: 'Hello, there' 8
aCategonzedVarnable 17 3

me <- 'Gumby'|

4.a subcategory
whoAml

os environmentAt: 'LOGNAME'
IfFail: 'The Phantom'

whoAmI

Get it Do it Close

T Sinceall that stuff in the text editor was initially selected, your typing conveniently replaced it al.

14

How to Program in Self 4.1 1/21/00 Browsing Concepts

After releasing the green button, it stays down to let you know that it is still working. After afew
seconds the slot appears:

4 anExampleObject Al E|X
Module: programmingExamples
parent™ traits clonable =
anUncategonzed Constant 314159 =
anUncategonzedMethod user Query report: 'Hello, there' B
anUncategornized Vanable 17 3
4.a category of slots
aCategornzedConstant 314159 =
aCategonzedMethod user Query report: 'Hello, there' B
aCategorizedVarnable 17 3
me 'Guanby' 3
4.a subcategory
who Am| .. B

os environmentAt: 'LOGNAME'
IfFail: 'The Phantom!'

whoAmI

Get it Do it Close

Tf you examine the slot’s annotation (available via the slot menu) it will show that the system has guessed that the
new slot (named “me”) should be saved in the “ programmingExamples’ module, and that instead of saving its actual
contents, the ot should just beinitialized to the string ‘ Gumby’.

15

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.3 Debugger

Explore the Self debugger. Start by scrambling the send to envi r onment Vari abl e: | f Fai | as
if you had misspelled it.

4.a subcategory
who Aml .. B

os evrlironmentAt: 'LOGNAME'
IfFail: 'The Phantom'

whoAmI

Get it Do it Close

Press the green button to accept the change, then hitthe Get it button. This should break some-
thing! Infact, instead of the result of the message, a Self debugger will materialize:

4.a subcategory
who Aml -

oS evdiromnentAt: 'LOGNAME '
IfFail: 'The Phantom'

whoAmI
4.Process: 'whoAml’
Lookup enor, 'evnironmentAt:IfFail' not found

G« Continue Step Step lexical Next Finish Frame Abort
pStack

16

How to Program in Self 4.1 1/21/00 Browsing Concepts

The debugger has alabel to indicate which process ran aground, a status indication shown in blue,
some buttons for controlling the process, and a collapsed outliner for the stack. Expand the stack:

4 Process: “whoAml
Lookup eror, 'evnironmentAtIfFail:' not found

Continue Step Step lexical Next Fimsh Frame Abort

4.Stack
--bakﬁ evnuonmentAt: argl LocNaME:
[fFail: arg? ..tom) .. B
-2Chject whoAml .. B
.aChject whoAmlI B8
Less stack

The stack filters out uninteresting frames by default.” The debugger assumes that the first method
you want to seeisthe one based on the text in the evaluator, and since the stack grows upwardsthis
oldest frame appears at the bottom. It has no method name, and contains the code whoAm . That
method called whoAm , whose code is too long to show next to the slot button, and that method
calledevni ronnment At : | f Fai | : because we just sabotaged it! Of course thereis no such meth-
od, but Self creates one dynamically to handle the error.

Thelittle boxes represent the receiver and arguments of the methods on the stack. Get the receiver
of theevni ronnent . . . message. Click on the box to the left of the word evni r onnment Varii -
abl e: (theonelabelled”. . . bal os” ifyou are running on the Macintosh):

P "macOSGlobalsos * ElX

T Since the Self compiler inlines calls automatically, Self code tends to be written in a highly-factored, deeply-nested
style. Thus, the debugger filters out stack frames that seem to be unimportant. If it ever filters out the frame you need
to see, thereisa“Don't filter frames’ entry in the stack’s middle-button menu.

17

How to Program in Self 4.1 1/21/00 Browsing Concepts

This object represents the interface to the Macintosh operating system. The little button with the
apostrophe in the top-left-hand corner indicates that this object has a comment. Push the button to
show (or hide) the comment:

» “macOSGlobals os A E[X

ffhis object provides low level access to selected Mac cal
Many Mac calls are provided through the indirect system ¢
files, sockets are opened/closed using specific direct pz
that the virtual machine can keep track of open files (ne
the select call).

A little philosophy: at the unix (os) level, every operat
takes a failure block to give the user the ability to ha:
failures. The block gets one argument, a string with the

(To automatically resize the outliner to show all the text, press control-L.) To see one of Self’s
scroll bars, grab the comment’s resize triangle (with the left-button) and move it up a bit:

» “macOSGlobals os A E[X

fhis object provides low level access to selected Mac ¢ |
Many Mac calls are provided through the indirect syster
files, sockets are opened/closed using specific direct
. : : scroll bar
that the wvirtual machine can keep track of open files |
the select call). -/
A little philosophy: at the unix (os) level, every ope:
takes a failure block to give the user the abilitv to 1

The affordance that appears on the right of the text isthe scroll bar, and you can either drag on the
little black line or just click in the bar to scroll the text up or down.

Push the little apostrophe button again to hide the comment. Now, you could expand this object to
find the correct spelling of the evnironment... message. But instead, pretend that all you remember
isthat it has the word “Variable” in it somewhere. So, use afacility called Fi nd Sl ot that takes
a pattern and an object, and finds any matching slots in that object or its parents. Use the middle-
button on the outliner’stitle (macOSA obal s o0s) to get the object menu and select Fi nd

slot. ..

Slots matching:
foo*
4 Starting lookup from:
macOSGlobals os

18

How to Program in Self 4.1 1/21/00 Browsing Concepts

Double-click on the word “foo” to select that field for editing. (The same trick works on slot
names)

Slots matching:
B i
Starting lookup from:
macOSGlobals os

Since we are searching for amethod with “Variable” in its name, backspace (the delete key on the

Mac) threeti mes' to erase the “foo” typein*Vari abl e*, hit the green button, and then hit the
triangle to start the search (if you make a typing mistake, you can double click the text to make it
editable again). The triangle will blink abit whileit is searching (one could do other thingsin the
meantime during along search), then the enumerator will show the match(es):

Slots matching:
Vanable
Starting lookup from:
macOSGlobals os

constraintVariable in globals

T One rough edge remaining in the Self user interface is the existence of two test editors, and this one does not imple-
ment multi-character selection, sigh. Or, you could type control-A to go the start, and control-K to delete the whole
field, sigh.

19

How to Program in Self 4.1 1/21/00 Browsing Concepts

Clicking on the little square button(s) would show the exact method(s). But, for our purposes, just
knowing the name is enough and now you have to fix it. So back to the debugger and click on the
method button on the right in the whoAm slot to expand the stack frame for the whoAm method:

4.Process: “whoAmlI
Lookup enor, 'evnronmentAt:IfFail' not found

Continue' Step Step lexical Next Finish Frame Abort

4 Stack
-balsos eymonmentAt: argl LoGHAME!
[fFail: arg? ..tom) .. B
.2Chject whoAml i
os evnironmentAt: 'LOGNAME

IfFail: 'The Phe

.AChject whoAmI B8
Less stack

Now the debugger shows the source of the method, with the actual message being sent highlighted.
(Inthiscaseit isjust the whole thing.) One of the conveniences in the Self programming environ-
ment is that you do not have to go back to the original method to fix it, but can just fix it here (fol-
lowing the grand tradition of Lisp and Smalltalk programming environments). So use the | eft

button to select the“vn” and type“nv” instead, then hit the green button to accept the change. The
green button will stay in abit longer because when a method is changed from the debugger, every
slot pointing to that same method is made to feel the change—the method is changed in place (see

20

How to Program in Self 4.1 1/21/00 Browsing Concepts

the figure below). This feature lets you change a method in a clone and simultaneously affect the
Changing a method in an object outliner vs. in a debugger

Object Outliner, before change Debugger, before change

object 1 old method object1 | old method
object 2 object 2 / debugger

Object Outliner, after changing object 2 Debugger, after change

object 1 old method object 1 \Old method

debugger

prototype, if you are putting your methodsin prototypesinstead of traits. Changing amethod in an
ordinary outliner would just affect that one object, even if other objects had been cloned from it.
This rule avoids unintentional changes. The more global kind of change performed by the debug-
ger takes alittle longer. When it is accomplished, the red and green buttons will disappear:

object 2 new method object 2

Blo

4 Process: “whoAml
Status: suspended

Continue' Step Step lexical Next Fimsh Frame Abort

4 Stack
.2Chject whoAml .. B

os environmentAt: 'LOGNAMF
IfFail: 'The Phe

.AChject whoAmI B8
Less stack

21

How to Program in Self 4.1 1/21/00 Browsing Concepts

Now os ishighlighted to show that the processis about to send “os’ to implicit-self. Try the St ep
button, which performs a single message send. After hitting the St ep button twice (and a control-
L to widen the debugger), the process will have entered the envi r onnent Vari abl e: | f Fai | :
method:

4.Process: “'whoAml
Status: suspended
Continue' Step Step lexical Next Fiish Frame Abort

4 Stack
-balsos environmentAt: t0 TOGNAME® [fFail: fb ..tom) .. B

fb value: unimplemented_on_ Mac

.2Chject whoAml .. B8

os environmentAt: 'LOGNAME
IfFail: 'The Phe

.AChject whoAmI 8
Less stack

22

How to Program in Self 4.1 1/21/00 Browsing Concepts

This method is not too interesting (especially on the Macintosh), so leave the debugger by hitting
Cont i nue and letting the process finish.

Congratulations on making through the interactive tutorial. In the remainder of this manual, we
will dive deeper into the programming environment for readers who want to writereal programsin
Self.

Here is more information on the debugger for future reference:

Table 2 The Debugger Buttons

What it says What it does

Continue Resumes running the process

Step Perform one message send (skipping over trivial accesses and assignments); Stepsinto the
called method.

Step Lexical Execute messages until control returns to the same lexical method, or until this method exits.

Very useful for methods with blocks.

Next Performs a message send and any messages in the called method; Steps over the called method.

Finish Frame Finishes running the topmost method.

Abort Kills off the process and dismisses the debugger.

In addition to the buttons, each frame in the debugger has some items to control the processin its
middle-button menu:

Table 3 Process control itemsin the activation middle-button menu

What it says What it does

Step Top frame: same as step button, not top frame: Finish any called methods.
Next Same as next button.

Retry Cut back the stack to this frame, then continue the process.

Revert Cut back the stack to this frame.

Finish Finish this frame.

23

How to Program in Self 4.1 1/21/00 Browsing Concepts

2.4 Enumerators

In additionto the Fi nd SI ot enumerator, Self has other ways to find things:

Table4 Enumerators

Name

Function

Implementors

Finds all the slots with a given name.

Implementors of :

Finds all the slots with the given name that take an argument (for read/write dots only).

Senders

Finds all the methods that send a message with a given name.

Senders of :

Finds all the methods that send the corresponding assignment message (read/write slots
only).

Sendersin family
(Senders of : in family)

Finds all the methods in this object, its ancestors, and descendants that send a message
with a given name (or the corresponding assignment message).

Find Slot

Starting from a designated object, finds all slotsin that object and its ancestors whose
name matches a given pattern. Caseisignored, “?’" matches any character, “*” matches
any series of zero or more characters. Also comesin “of :” and “in family” flavors.

Methods Containing

Finds methods containing the specified string. Similar to grep without wildcards.

Copied-down Children

Finds objects copied-down (see below) from this one.

References

Finds slots that contain references to the selected object.

Slotsin Module

On the module menu (see below); shows all slotsin agiven module.

Added or Changed
Slotsin Module

On the module menu (see below); shows all slots added or changed in the module since
it was filed out.

Removed Slotsin
Module

On the module menu (see below); shows the names of the slots removed from the mod-
ulesinceit was last filed out.

Expatriate Slots

On the changed module menu (see below); shows all dotsin filed-out objects that do
not themselves specify amodule. These slots will not be filed out.

The copy- down and nodul e enumerators will be covered later.

The other enumerators can be summoned from several places: the outliner menu, the slot menu,

and the text editor menu. Asashortcut, selecting awhole expression in the text editor and then ask-
ing for an enumerator will bring up the enumerator to search for the outermost message send in the
expression. So if you select the following expression: aSet findFirst: el em|fPresent:
[snort] |fAbsent: [sludge] andchooseimplementorsfrom the text editor menu, you will
get an Implementors enumerator ready to search for fi ndFirst:IfPresent:|fAbsent:.Of
course, you can always change the search target by double-clicking and editing the text. The text
editors also implement a host of handy double-clicking shortcuts.

24

How to Program in Self 4.1

1/21/00

Hacking Objects

Finally thereis one last detail about enumerations. many contain a check-box to choose Wl | -
known onl y. Thisisaways checked by default to speed things up. When checked, only well-

known (i.e. filed-out, see below) objects are searched, which is much faster.

3 Hacking Objects

Hacking—the discipline of making fine furniture from trees using an axe.

In going through this document, you have already added a ot and edited methods in both object
outliners and debuggers. In addition Self 4.1 has many other ways to change an object:

Table 5 Ways to change an obj ect

Ways to change an
object

How

Removing, Moving, Copying Categories

Removing a category.

“Move’ in category middle menu, then drag the category to
the background or the trash can.

Removing a category

Add dot or category to
object or category.

“Add Category” in object or category middle menu,
then type in the new category name, then hit green button to
accept.

Adding a new category.

Moving a category.

“Move” in category middle menu, then drag to another
object.

Copying a category.

Copying a category.

“Copy” in category or category middle menu, then drag the
category to another object.

Copying a category.

Removing, Adding, Moving, Copying Slots

Removing adot.

“Move’ in slot middle menu, then drag the slot to the back-
ground or the trash can.

Removing aslot

Add slot to object or “Add Slot” in object or category middle menu, Adding adding a new

category. then type in the new slot name, “=" or “<-", and contents of | slot containing data,
slot (or just name alone for variable slot containing nil), code, a prototype, or a
then hit green button to accept. traits object.

Moving adlot. “Move’ in dot middle menu, then drag to another object. Moving adlot.

Copying adlot. “Copy” in dlot or category middle menu, then drag theslot | Copying aslot.

to another object.

Changing adot

25

How to Program in Self 4.1

1/21/00

Hacking Objects

Table 5 Waysto change an obj ect

Waysto phange an How Why
object
Edit adot “Edit” on a dot middle-button menu, then make any To change the contents

changes in the text editor, then hit green button to accept
changes.

of aconstant data slot,
or to change contents
and set initial value at
sametime, or to change
adot from datato
method or from con-
stant to variable.

Edit slot name or its
argument names

Double-click on the name of the dot, wait for red and green
buttons to appear on the right of the name, edit the name,
then hit the green button.

To changeaslot’sname
or the names of its
arguments.

Change amethod in a
slot.

Click on the method icon button on the right of the ot to
open atext editor on the method. Make the changes, then
click on the green button to accept them.

Tofixabugina
method.

Change the visibility of
asdlot

On the dlot’s middle menu choose “Make Public,” “Make
Private,” or “Make Undeclared.”

The Sdlf interface uses
bold, normal, and sans-
serif fontsto indicate
public, private, and
unspecified slots. This
distinction carries no
semantics, but servesto
record the program-
mer’s intentions.

Adding a Comment

Add acomment to an
object or slot

“Show Comment” in the object or slot middle menu to open
up acomment text editor, then typing in the comment, then
hit the green button to accept it. If an object or slot already
has a comment, it can be shown/hidden by hitting the small
button labeled with a single quote.

To amuse and intrigue
those who follow.

Annotating an Object

Change creator annota-
tion of an object

“Show Annotation” in object middle menu to expose object
annotation information,

then click on creator path field and typing in desired creator
path.,

then hit green button to accept annotation.

Setting creator path
tells transporter which
dlot “owns’ this object,
and tells environment
what to name the
object.

Set creator of contents
of adlot to that slot

“Set Creator” in slot middle menu.

See above.

26

How to Program in Self 4.1

1/21/00

Hacking Objects

Table 5 Waysto change an obj ect

Ways to change an
object

How

Why

Change copy-down

“Show Annotation” in object middle menu to expose object

Simulates subclassing

information annotation information, by alowing an object to
then click on copy-down-parent field and type in desired contain copies of the
copy-down-path., copy-down selector and slots to omit) slotsin another object.
then hit green button to accept annotation. When copy-down-par-
ent has slots added/
changed/removed, the
change propagatesto
the copied-down chil-
dren.
Change the object’s “Show Annotation” in object middle menu to expose object | After building a new
“isComplete’ flag annotation information, prototype, seti sCom

then push one of the isComplete radio buttons,
then hit green button to accept the annotation change.

pl et e to get the envi-
ronment to show its
printString,andto
get the transporter to
use its storeString.

Annotate a slot

Set the module mem-
bership of aslot, the

slotsin acategory, or
the slotsin an object.

Select “Set Module” from the middle menu of aslot, cate-
gory, or object, then (for object or category) indicate which
slots you want to change by choosing which module they
currently belong to, finally select a new module to put the
dotsin.

To ensure that Slots are
filed out in the correct
sourcefile.

Typein or examine the
module for asingle slot

“Show Annotation” on the slot middle menu to expose the
annotation, then click on the module editor, type in the mod-
ule name, then click the green accept button.

Save as above.

Change slot initial con-
tents

“Show Annotation” on the slot middle menu to expose the
annotation, then click on the “Follow Slot” button, or type
the desired initial value expression into the ‘ Initial Con-
tents’ editor, then hit the green accept button.

To have the transporter
record the current con-
tents of aslot, choose
“Follow Slot.” To have
it ignore the current
value and just record a
given expression for the
dot’'sinitial value use
the “Initial Contents’
option.

27

How to Program in Self 4.1 1/21/00 The Transporter

4 TheTransporter

The transporter has been built in order to move programs from one world of objectsto another. so,
you can ignore it as long as you work with just one snapshot. However, if you want to give your
program to someone else, or save it as source, or read it in to a newer snapshot, you will need to
learn about the transporter.

4.1 TheTraditional Schism between Program and Data

What isaprogram? In most systemsit is a piece of text, although in more advanced environments
it may have structure. It is a description that can be used to create an activity, arunning program,
that can then operate on data. In the conventional view:

Table 6 The Schism between Program and Data

Program Data
Who can changeit | The programmer The user
When can it change | At programming At execution time
time
How isit changed With atext editor By running a pro-
gram

Thismodel grew up in an erawhere computers were too small to host both compilers and applica-
tions at the same time. Although it has some virtues it makes other operations very hard: it ishard
to include data, such as hand-drawn icons, directly into a program, and it is hard to write applica-
tions whose data domain is really programs.

4.2 Data = Program
For Self, we have gone a different way, following in the footsteps of Smalltalk and Lisp:

A Self program consists of live objects.
Self hasno edit/run mode. To change an object, you do not retreat to asourcefile, or evento aclass,
you just change the object itself. Thisimmediacy and concreteness |essens the cognitive burden on
the programmer, smooths the learning curve, and hastens gratification.
However, this stance creates a big problem the moment you need to move a program from one

world of objectsto another; it isvery hard to pin down what to do. For example, suppose an object
containsaslot with 1024 init. Should that value be copied literally? Perhapsit isthe result of some

28

How to Program in Self 4.1 1/21/00 The Transporter

computation (such as the width of the current screen) and should be recomputed instead. There
simply is not enough information in a Self object to extract programs from Snapshots.

4.3 Changesvs. Pieces

Earlier in the project we considered constructing a cal culus of changes that could be used to repre-
sent programs, and then moving programs by reapplying the changesto the new snapshot. But, we
had enough on our plate and rejected this approach as too ambitious to tackle without a dedicated
graduate student.

Instead, we decided to represent programs as pieces that could be filed out of a snapshot and filed
into another. To allow usto merge changesto the same program, we decided to represent its pieces
as Unix source files amenable to RCS. The Self Transporter was built to save programs as source
files.

4.4 Objectsvs. Slots

But what is a program? Although a new program frequently involves creating new objects, it also
can mean added slots to existing objects. For example, a program to find palindromes might add a
dottotraits stringcaledi sPali ndrome. Sowe decided to refine the granularity of the

Transporter to the slot level; each dot has an annotati on' (its module) which gives the name of the
source file containing that slot. This hair- or rather object-splitting implies that one object may be
built incrementally as the result of reading several files, and so the transporter endeavors to keep
the order that the files are read in as independent as possible. Since each object can possess slots
in different modules, the outliner shows asummary of the modules of an object, sorted by frequen-

cy.

Turned around, amodule can be viewed as a collection of dlots, plus some other information: each
module also includes adirectory, alist of submodulesto be read in whenever it isread, and post -
Fi | el n method to be run whenever the moduleis read. These dataallow modulesto be organized
hierarchically by subsystem, for example the allUl2 module includes all the modulesin the ui2
system.

Now here comesthe nice part: the Self environment incrementally maintains a mapping from mod-
ulesto slots, and alist of changed modules, which can be obtained from the background menu.
When you make a change the appropriate module will be added to the list, and can be written asa
source file by clicking its w button. The middle-button menu on the changed modules and individ-
ual modules contains a host of useful entries for understanding what has been changed.

T The Self Virtual Machine provides for annotations on slots or whol e objects. While the annotations do not influence
program execution, they can be accessed and modified by Self’s reflective facility, mirrors. Annotations are used to
hold many things, including comments on objects and dlots.

29

How to Program in Self 4.1 1/21/00 The Transporter

45 What to Save for the Contents of a Slot

At this point, the reader may be thinking “ So modules know which dlots they include, but how do
they know which objectsto include?’ After all, when the transporter savesadot in afilewhat can
it put for the contents of the slot? Here iswhere the transporter runs smack into the problem of not
enough information, and a variety of means have to be used. As shown in the flowchart below:

How the transporter files out objects

Is slot
annotated with
an initializer
expression?

Write out
that expression

yes

Is slot contents
complete and
isimmutableForFilingOut

Does slot Is this slot

no
contents have the creator? Refer to the
valid creator? creator
yes no
yes
no
Is slot Is result Send
contents storeStringNeeds storeStringlfFail: Use the
complete? the same storeString
yes Qbject? no suceess
no yes failure

File out an
expression to
create a new empt
object if this slot
does not exist yet.

30

How to Program in Self 4.1 1/21/00 The Transporter

» Sometimes the programmer does not want to store the actual contents of a dot, but instead
wants to store an initialization expression. This intention is captured with another annotation
on adlot: each dot can either be annotated Fol | ow Sl ot orInitialize To Expression
In the latter case, aninitializer is also supplied.

» Even though the transporter is supposed to follow the dlot, it may contain an object that is cre-
ated by another slot. For example, the par ent dlot in a point should just refer totraits
poi nt rather than recreating the traits object. Thisinformation is captured by a Cr eat or an-
notation on each object that givesthe path from the | obby to the slot intended to create the ob-
ject. In this case, the transporter just files out a reference to the object’s creator, cleverly
enough so that the actual creator slot does not need to have been already filed in. On the other
hand, if an object is immutable, its identity is not important. If an object is annotated asi s-
conpl et e’ the transporter sends it i s| nut abl eFor Fi | i ngQut and if that message re-
turns t r ue, the transporter never files out a reference. For example, integers would answer
t r ue to this message.

* |f the contents of the slot is a simple (usually immutable) object like 17, 3@, or * f oo’ (the
string) the transporter should just ask the object for astring to store. It does this by checking to
see if the object is annotated as i sConpl et e to seeif it is safe to send the object messages,
checks to see if this object is itself needed for the string (it would be a mistake to file out the
prototypical point as 0@, because the x slot would never be defined), then asks the object for a
store string.To see if the object must itself be filed out, it sends st or eSt ri ngNeeds and if
this message does not return the object itself it sendsst or eSt ri ngl f Fai | : . If this succeeds,
the transporter can save a data-type specific string for the object. This fairly elaborate mecha-
nism allows programmers to add new kinds of objects that transport out with type-specific cre-
ation strings.

* Finadly, if it can do nothing else, the transporter creates a new object for the contents of the
dot. The object is created in aclever way so that afile that adds slots to an object can be read
before the file that officially creates the object without loss of information.

Filing out objectsistoo complicated, and over the past two years we have repeatedly tried simpler
schemes. However, al of the capabilitiesin the current scheme seem to be essential in some case.
Thisissue remains as a question for future work.

4.6 Copy Down

Because Self eschews classes and because the current compiler cannot optimize dynamic inherit-
ance, it is necessary to copy-down slots when refining an object. For example, the prototypical

morph object contains many slots that every morph should have, and some mechanism is needed
to ensure that their presence is propagated down to more specialized morphs like the circleMorph.
In aclass-based language, this need is met by arule ensuring that subclasses include any instance

T sConpl et e isused by the environment to decide when it is safe to send messages like printString.

31

How to Program in Self 4.1 1/21/00 The Transporter

variables defined in their superclasses. In Self, thisinheritance of structure is separated from the
inheritance of information performed by the normal hierarchy of parent sots. Instead of including
afacility for inheriting structurein the language, Self 4.1 implements afacility in the environment,
called “ copy-down.” An object’s annotation can contain a copy-down parent, copy-down selector,
and set of dlotsto omit. The copy-down parent is sent the message given by the copy-down selec-
tor, and (except for the slots-to-omit), the slotsin the result are added to the object. Copied-down
dlots are shown in pink in the outliner. For example, here are the prototypical morph and the pro-
totypical circleMorph:

4. circleMorph(type: circleMorph) [E|X
Creator slot circleMorph
Complete? Yes No
Copydown parent morph

4 morph(type: morph) AlE[X
e - Copydown selector copyRemoveAllMorphs

Creator slot morph

Complete? Yes No Slots to omit parent prototype rawBox rawColor
Copydown parent Modules: morphLib, morph&tvipg
Copydown selector parent* ER)
Slots to omit center ol S
Modules: morph, morphSaving radius 50 3
parent™ traits morph = rawColor a paint(leaf) 3
4, Basic Morph State 4, Basic Morph State
“hResizing 0 “hResizing 03
“vResizing 03 “vResizing 03
“velcroFlag rue 3 “veleroFlag true 3
cachedMinHeight ml 3 cachedMinHeight ml 3
cachedMmWidth mi 3 cachedMmWidth ml 3
“layoutOkay Jalse 3 “layoutOkay Jalse 3
“noStickOuts Jalse 3 “noStickOuts Jalse 3
“rawBox a rectangle(0@0 # 100@80) 3 rawMorphs vector 3
rawColor a pant(khaki) 3 rawOwner ml 3
rawMorphs vector % 4 filing out
rawOwner ml 3 prototype aircleMorph B
4 filing out
prototype morph 8

TheBasi ¢ Mor ph St at e category of slots has been copied from thosein nor ph by first copying
the morph and removing all its submorphs (i.e. by sending it copyRemoveAllMorphs) and then
copying the resultant slots, omitting par ent, prot ot ype, rawBox andrawCol or. Thefirst
three of these slots were omitted because their contents had to be different; copied-down slots are
copied, they cannot be specially initialized in Self 4.1. The omitted slot r awBox is more interest-
ing; circle morphs do not need thisslot at al and so omit it. Most other object-oriented program-
ming systems would not alow a subclass to avoid inheriting an instance variable.

The Sdlf 4.1 programming environment uses the copy-down information to allow the programmer
to use a class-based style when appropriate. For example, if the programmer adds aslot to nor ph

32

How to Program in Self 4.1 1/21/00 Acknowledgments

the environment will offer toadd it toci r cl eMor ph, too. If the programmer should use atext ed-
itor to edit the definition of morph, the circleMorph object will be changed after rereading both ob-
ject’stext files. The least convenient aspect of using copy-downsisthat to do the moral equivalent
of creating asubclass, the programmer hasto create two objects. anew traits object, and anew pro-
totype, and then set the object annotation of the new prototype. Perhaps someday there will be a
button to do this, or perhaps other styles of programming will emerge.

This concludes a brief tour of the Self 4.1 programming environment. Although we strove for sm-
plicity in the design of Self, its programming environment includes afair amount of functionality
which may take awhile to learn. We hope that you find the investment worth the reward.

5 Acknowledgments

The Self programming environment is the result of many people's efforts. Lars Bak wrote the first
version of the outliner as aquick way to introduce a programming environment into the Ul 2 frame-
work.Randall B. Smith, Craig Chambers, Bay-Wel Chang, UrsHdlzle, Ole Agesen, John Maloney,
and Mario Wolczko, each made essential contributed essentia contributions. Ole Lehrmann Mad-
sen has added a structure editor, detailed elsewhere. In addition. Ole Lehrmann Madsen bravely
learned and tested the system, Bay-Wel Chang and Ole Agesen aso tested and suggested, Robert
Duvall was another early user who helped keep the volleyball games going, and Craig Chambers
beamed down support from the far north. The author ported it to the Macintosh. | would like to
thank Sun Microsystems for it support, and especially Neill Wihelm for his encouragement.

33

How to Program in Self 4.1 1/21/00 Every Menu Item in the Programming Environment

Appendix A Every Menu Item in the Programming Environment

Thistable only covers the middle-button menus, the right-button (morph) menu is described else-
where. It merges items from several menus:. the background menu, the outliner whole-object
menu, the outliner category menu, the outliner slot menu, the text editor menu, the debugger stack
menu, the iterator object menus, and the changed module morph menu.

Table7: Menu Items

L abel Function
Add Category Adds a category to an object or category.
Add Slot Adds a slot to an object or category.

Added or Changed On amodule morph, enumerates slots added/changed since last save.
Slots

All Modules Summons a hierarchical list of al modules from the changed modules
morph.

All Slots On amodule morph, enumerates its slots.

Changed Modules Summons alist of changed modules.

Children Enumerate an object’s children.

Clean Up Cl_ez;n up the screen: collapse outliners and stack them on the left of the
window.

Clean Up Memory Manually initiate a garbage collection. Can help when you know you
have just freed up a bunch of space. Self also does this automatically.

Collapse All Collapses all outliners, or all categories within an outliner or category.

Copy Down Children | Enumerate an object’s copy-down children.

Copy Down Parent Show an object’s copy-down parent.

Copy Copies dots, categories or text.
Core Sampler Summons an object for manipulating morphs.
Create Button For adlot, create a button to send the message to the object. The receiver

may be set by carrying the button on top of the receiver and using the
middle-button on the button. (The button is grabbed with either the car-
pet-morph or with the grab right-menu item. Bug: buttons do not mani-
fest their results.)

Cut Copiestext to the text buffer.

34

How to Program in Self 4.1

1/21/00 Every Menu Item in the Programming Environment

Table7: Menu ltems

L abel Function
Do Selection Evaluate the selected text, do not show the result.
Do it Evaluate the text in the editor, do not show the result.
Edit On adlot, open an editor to change its name, slot type, or contents.
Evaluator Adds an evaluator window to an object outliner.
Expand All Expand all subcategories.

Expatriate Slots

On the changed module morph; shows alist of slots not included in any
module.

(Don't) Filter Frames

On a debugger stack, enable (or disable) filtering.

Find Slot

Searches an object and its ancestors for slot names matching a pattern.

Find Slot of : For an assignable slot x, show all slots named x: in the object and its
ancestors.
Flush Discards cached state, e.g. the result of an enumeration.

Forget | was changed

On amodule morph, removes it from the list of changed modules and
clears out its record of added, changed & removed dots.

Get Module Object

On amodule morph summons the object outliner for the module. Useful
for editing its postFileln method, or itsrevision.

Get Sdlection

Evaluate the selected text & show the result.

Get it

Evaluate the text in the editor, show the result.

Hide Annotation

Hides the object or slot annotation.

Hide Comment

Hides the object or slot comment.

Implementors

Searches for dots of a given name.

Implementors of :

For an assignable slot x, show all implementors of x:.

Load Morph From
File

Readsin afile created with the right-menu item “ Save Morph to File”

Make Creator

On adot, set the creator annotation of its contents to be the slot.

Make Private

Change the style of the slot to show that it is intended to be private (not
enforced).

35

How to Program in Self 4.1

1/21/00 Every Menu Item in the Programming Environment

Table7: Menu ltems

Label Function
Make Public Change the style of the slot to show that it is intended to be public (not
enforced). Adds a comment for posterity.
Make Undeclared Change the style of the slot to show that no clear intention exists asto its

visibility. (A Self exclusive!)

Methods Containing

Searches for all methods containing a string.

Move Moves slots or categories.

New Shell Summon a new shell object.

Open Factory Win- Open a new window containing handy morphs (such as a radar-view)

dow you can tear-off and drag to other Self windows.

Palette Summons an object for obtaining morphs for building.

Paste Pastes text from the buffer.

Quit Leave job and ride boxcars.

Radar View Summons an object for moving the current viewport around in space.

Read Module On a module morph, rereads the sourcefile.

References Enumerate references to an object.

Removed Slots On amodule morph, lists removed slot paths.

Restore Window Restores the saved state of the screen.

State

Save snapshot Saves an image of all objects in a snapshot file. Overwrites the snapshot
file that was opened originally. Saves the previous version with a".old"
suffix.

Save snapshot as ... Lets you set the file name and other parameters of the saved snapshot.
For example, if you have alot of memory, you can increase the code
cachesize.

Save Window State | Savesthe state of the screen.

Send For amethod in a concrete object, send the message to the object.

Senders Searches for methods sending a given message.

36

How to Program in Self 4.1

1/21/00 Every Menu Item in the Programming Environment

Table7: Menu ltems

Label

Function

Senders of :

For an assignable dlot x, show all senders of x:, i.e. methods that might
assign to x.

Sendersin family

Searches for methods sending a given message in the selected object, its
ancestors, and it descendants.

Sendersof : in family

For an assignable dlot x, show all senders of x:, i.e. methods that might
assign to x in the selected object, its ancestors, and it descendants.

Set Module

Sets the module of aslot or group of slots.

Shell

Summons an outliner on the shell. Used for evaluating expressions.

Show All Frame

On a debugger stack, disable filtering.

Show Annotation

Shows the object or slot annotation.

Show Comment

Shows the object or slot comment.

Show Morph For morph object outliners, summons the morph that the object imple-
ments.

“Subclass’ Me Appears on the object menu. Automates several steps equivalent to sub-
classing in Smalltalk: Creates a copy-down child of the selected object
and makes a new parent object for the new child that inherits from the
selected object’s parents. It also sets some of the annotations for trans-
port.

The box at the top. Pins up the menu.

Toggle Spy Toggles an X Window spying on the Virtual Machine. A nice source of
reassurance.

Traits Family Show an inheritance hierarchy textually. Only works on certain objects
on alternate Thursdays.

Write Snapshot Saves al the objectsin the Self world to a (fairly large) file.

37

